Dopamine sensor based on a glassy carbon electrode modified with a reduced graphene oxide and palladium nanoparticles composite

被引:183
|
作者
Palanisamy, Selvakumar [1 ]
Ku, Shuhao [1 ]
Chen, Shen-Ming [1 ]
机构
[1] Natl Taipei Univ Technol, Dept Chem Engn & Biotechnol, Electroanal & Bioelectrochem Lab, Taipei 106, Taiwan
关键词
Reduced graphene oxide; Palladium nanoparticles; Dopamine; Electrochemical oxidation; Sensor; SELECTIVE DETECTION; VOLTAMMETRIC DETERMINATION; NANOCOMPOSITE; ELECTROCATALYSIS; FILM;
D O I
10.1007/s00604-013-1028-1
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We report on a sensitive electrochemical sensor for dopamine (DA) based on a glassy carbon electrode that was modified with a nanocomposite containing electrochemically reduced graphene oxide (RGO) and palladium nanoparticles (Pd-NPs). The composite was characterized by scanning electron microscopy, energy dispersive spectroscopy, and electrochemical impendence spectroscopy. The electrode can oxidize DA at lower potential (234 mV vs Ag/AgCl) than electrodes modified with RGO or Pd-NPs only. The response of the sensor to DA is linear in the 1-150 mu M concentration range, and the detection limit is 0.233 mu M. The sensor was applied to the determination of DA in commercial DA injection solutions.
引用
收藏
页码:1037 / 1042
页数:6
相关论文
共 50 条
  • [21] Electrochemical Sensor Based on Nafion/Gold Nanoparticle/Electrochemically Reduced Graphene Oxide Composite-Modified Glassy Carbon Electrode for the Detection of Diuron
    Qin, Jianfang
    Qin, YingLian
    Jiang, Xiuping
    Du, Yajin
    Du, Yajing
    Yao, Chen-Zhong
    Wang, Xi
    Yang, Haiying
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (11): : 11203 - 11214
  • [22] An Amperometric Hydrogen Peroxide Sensor Based on Reduced Graphene Oxide/Carbon Nanotubes/Pt NPs Modified Glassy Carbon Electrode
    Zhang, Yuanyuan
    Cao, Qi
    Zhu, Fengmei
    Xu, Hedan
    Zhang, Yang
    Xu, Wenfeng
    Liao, Xiaoling
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (09): : 8771 - 8785
  • [23] A facile electrochemical sensor based on a composite of electrochemically reduced graphene oxide and a PEDOT:PSS modified glassy carbon electrode for uric acid detection
    Putra, Budi R.
    Nisa, Ulfiatun
    Heryanto, Rudi
    Rohaeti, Eti
    Khalil, Munawar
    Izzataddini, Arini
    Wahyuni, Wulan T.
    ANALYTICAL SCIENCES, 2022, 38 (01) : 157 - 166
  • [24] Simultaneous and selective electrochemical determination of dihydroxybenzene isomers at a reduced graphene oxide and copper nanoparticles composite modified glassy carbon electrode
    Palanisamy, Selvakumar
    Karuppiah, Chelladurai
    Chen, Shen-Ming
    Yang, Cheng-Yu
    Periakaruppan, Prakash
    ANALYTICAL METHODS, 2014, 6 (12) : 4271 - 4278
  • [25] polycalconcarboxylic acid/electrochemically reduced graphene oxide-modified glassy carbon electrode-based voltammetric sensor for the simultaneous determination of dopamine and tyrosine
    Swathy, S.
    Kodakat, Keerthi
    Kumar, K. Girish
    IONICS, 2024, 30 (06) : 3521 - 3539
  • [26] Nickel Oxide (NiO)/Reduced Graphene Oxide (RGO) Composite Modified Carbon Paste Electrode as an Electrochemical Sensor for the Sensitive Determination of Dopamine
    Joseph, Teena
    Sona, V. K.
    Aiswarya, A.
    Rasheed, Faseeha Abdul
    Thomas, Nygil
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS (ICAM 2019), 2019, 2162
  • [27] Electro-reduced graphene oxide film modified glassy carbon electrode as an electrochemical sensor for sibutramine
    Teradal, Nagappa L.
    Narayan, Prashanth S.
    Jaladappagari, Seetharamappa
    ANALYTICAL METHODS, 2013, 5 (24) : 7090 - 7095
  • [28] A sensitive sensor based on molecularly imprinted polypyrrole on reduced graphene oxide modified glassy carbon electrode for nevirapine analysis
    Hassan Pour, Bayazid
    Haghnazari, Nahid
    Keshavarzi, Fatemeh
    Ahmadi, Elahe
    Zarif, Bahareh Rahimian
    ANALYTICAL METHODS, 2021, 13 (40) : 4767 - 4777
  • [29] Sensing hydrogen peroxide with a glassy carbon electrode modified with silver nanoparticles, AlOOH and reduced graphene oxide
    Ziyin Yang
    Chengcheng Qi
    Xiaohui Zheng
    Jianbin Zheng
    Microchimica Acta, 2016, 183 : 1131 - 1136
  • [30] Copper nanoparticles and reduced graphene oxide modified a glassy carbon electrode for the determination of glyphosate in water samples
    Setznagl, Sarah
    Cesarino, Ivana
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY, 2022, 102 (01) : 293 - 305