Theory of dust voids in plasmas

被引:295
|
作者
Goree, J [1 ]
Morfill, GE [1 ]
Tsytovich, VN [1 ]
Vladimirov, SV [1 ]
机构
[1] Max Planck Inst Extraterr Phys, D-85740 Garching, Germany
来源
PHYSICAL REVIEW E | 1999年 / 59卷 / 06期
关键词
D O I
10.1103/PhysRevE.59.7055
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Dusty plasmas in a gas discharge often feature a stable void, i.e., a dust-free region inside the dust cloud. This occurs under conditions relevant to both plasma processing discharges and plasma crystal experiments. The void results from a balance of the electrostatic and ion drag forces on a dust particle. The ion drag force is driven by a flow of ions outward from an ionization source and toward the surrounding dust cloud, which has a negative space charge. In equilibrium the force balance for dust particles requires that the boundary with the dust cloud be sharp, provided that the particles are cold and monodispersive. Numerical solutions of the one-dimensional nonlinear fluid equations are carried out including dust charging and dust-neutral collisions, but not ion-neutral collisions. The regions of parameter space that allow stable void equilibria are identified. There is a minimum ionization rate that can sustain a void. Spatial profiles of plasma parameters in the void are reported. In the absence of ion-neutral collisions, the ion flow enters the dust cloud's edge at Mach number M = 1. Phase diagrams for expanding or contracting voids reveal a stationary point corresponding to a single stable equilibrium void size, provided the ionization rate is constant. Large voids contract and small voids expand until they attain this stationary void size. On the other hand, if the ionization rate is not constant, the void size can oscillate. Results are compared to recent laboratory and microgravity experiments.
引用
收藏
页码:7055 / 7067
页数:13
相关论文
共 50 条
  • [31] Dust interferometers in plasmas
    Chaudhuri, M.
    Nosenko, V.
    Thomas, H. M.
    PHYSICAL REVIEW E, 2016, 93 (03)
  • [32] Voids in dust clouds suspended in the plasma sheath
    Paeva, GV
    Stoffels, WW
    Dahiya, RP
    Stoffels, E
    Kroesen, GMW
    DUSTY PLASMAS IN THE NEW MILLENNIUM, 2002, 649 : 188 - 191
  • [33] Dust Laden Plasmas in Space
    Mendis, D. Asoka
    DUSTY/COMPLEX PLASMAS: BASIC AND INTERDISCIPLINARY RESEARCH: SIXTH INTERNATIONAL CONFERENCE ON THE PHYSICS OF DUSTY PLASMAS, 2011, 1397
  • [34] Temperature of Dust in Hot Plasmas
    S. A. Drozdov
    Yu. A. Shchekinov
    Astrophysics, 2019, 62 : 540 - 555
  • [35] The criteria for dust agglomeration in plasmas
    Bingham, R
    Tsytovich, VN
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2001, 29 (02) : 158 - 163
  • [36] Dust phenomena in processing plasmas
    Watanabe, Y
    PLASMA PHYSICS AND CONTROLLED FUSION, 1997, 39 (5A) : 59 - 72
  • [37] Charged dust structures in plasmas
    Cramer, NF
    Vladimirov, SV
    IUTAM SYMPOSIUM ON MECHANICAL AND ELECTROMAGNETIC WAVES IN STRUCTURED MEDIA, 2001, 91 : 135 - 148
  • [38] Correlations of dust particles in plasmas
    de Angelis, U
    PHYSICA SCRIPTA, 1998, T75 : 75 - 78
  • [39] Temperature of Dust in Hot Plasmas
    Drozdov, S. A.
    Shchekinov, Yu. A.
    ASTROPHYSICS, 2019, 62 (04) : 540 - 555
  • [40] Dust vortex flows in plasmas
    Shukla, PK
    PHYSICS LETTERS A, 2002, 306 (2-3) : 134 - 136