QUASILINEARIZATION FOR HYBRID CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS

被引:0
|
作者
Devi, J. Vasundhara [1 ]
Radhika, V.
机构
[1] GVP Coll Engn, GVP Prof V Lakshmikantham Inst Adv Studies, Visakhapatnam, Andhra Pradesh, India
来源
DYNAMIC SYSTEMS AND APPLICATIONS | 2012年 / 21卷 / 04期
关键词
Hybrid Caputo fractional differential equations; Quasilinearization; Existence;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we develop the method of Quasilinearization for hybrid Caputo fractional differential equations which are Caputo fractional differential equations with fixed moments of impulse. In order to prove this result we use the weakened assumption of C-q-continuity in place of local Holder continuity.
引用
收藏
页码:567 / 581
页数:15
相关论文
共 50 条
  • [21] On Caputo-Hadamard fractional differential equations
    Gohar, Madiha
    Li, Changpin
    Yin, Chuntao
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (07) : 1459 - 1483
  • [22] θ-SCHEME FOR SOLVING CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS
    Doan, Thai son
    Huong, Phan thi
    Kloeden, Peter e.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 25
  • [23] Abstract differential equations and Caputo fractional derivative
    Carvalho-Neto, P. M.
    SEMIGROUP FORUM, 2022, 104 (03) : 561 - 583
  • [24] Abstract differential equations and Caputo fractional derivative
    P. M. Carvalho-Neto
    Semigroup Forum, 2022, 104 : 561 - 583
  • [25] Existence Theory for ψ-Caputo Fractional Differential Equations
    Nadhir Bendrici
    Abdelatif Boutiara
    Malika Boumedien-Zidani
    Ukrainian Mathematical Journal, 2025, 76 (9) : 1457 - 1471
  • [26] QUASILINEARIZATION FOR FRACTIONAL DIFFERENTIAL EQUATIONS OF RIEMANN-LIOUVILLE TYPE
    Liu, Zhenhai
    Wang, Rui
    Zhao, Jing
    MISKOLC MATHEMATICAL NOTES, 2014, 15 (01) : 141 - 151
  • [27] On the Nonlinear Fractional Differential Equations with Caputo Sequential Fractional Derivative
    Ye, Hailong
    Huang, Rui
    ADVANCES IN MATHEMATICAL PHYSICS, 2015, 2015
  • [28] A modified quasilinearization method for fractional differential equations and its applications
    Vijesh, V. Antony
    Roy, Rupsha
    Chandhini, G.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 : 687 - 697
  • [29] A NONLOCAL HYBRID BOUNDARY VALUE PROBLEM OF CAPUTO FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS
    Ahmad, Bashir
    Ntouyasi, Sotiris K.
    Tariboon, Jessada
    ACTA MATHEMATICA SCIENTIA, 2016, 36 (06) : 1631 - 1640
  • [30] A NONLOCAL HYBRID BOUNDARY VALUE PROBLEM OF CAPUTO FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS
    Bashir AHMAD
    Sotiris K.NTOUYAS
    Jessada TARIBOON
    Acta Mathematica Scientia, 2016, (06) : 1631 - 1640