Strain compensated InGaAs-GaAsP-InGaP laser

被引:26
|
作者
Dutta, NK
Hobson, WS
Vakhshoori, D
Han, H
Freeman, PN
deJong, JF
Lopata, J
机构
[1] Lucent Technologies Inc., Bell Labs. Innovations, Murray Hill
关键词
D O I
10.1109/68.502248
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The performance characteristics of InGaAs-GaAsP-InGaP strain compensated laser emitting near 1 mu m are reported, The ridge waveguide lasers have room temperature threshold current of 18 mA and differential quantum efficiency of 0.45 W/A/facet. The linewidth enhancement factor is smaller and gain coefficient is larger for these strain compensated lasers compared to that for conventional strained layer laser, This may be due to higher effective compressive strain in the light emitting layer of these devices which reduces the effective mass, The observed larger gain coefficient is consistent with the measured larger relaxation oscillation frequency of these lasers compared to that for a conventional strained layer laser.
引用
收藏
页码:852 / 854
页数:3
相关论文
共 50 条
  • [41] Metamorphic GaAsP and InGaP Solar Cells on GaAs
    Tomasulo, Stephanie
    Yaung, Kevin Nay
    Lee, Minjoo Larry
    IEEE JOURNAL OF PHOTOVOLTAICS, 2012, 2 (01): : 56 - 61
  • [42] Characterisation of strain-compensated InGaAs/InGaAs quantum well cells for TPV applications
    Abbott, P
    Rohr, C
    Connolly, JP
    Ballard, I
    Barnham, KWJ
    Ginige, R
    Clarke, G
    Nasi, L
    Mazzer, M
    THERMOPHOTOVOLTAIC GENERATION OF ELECTRICITY, 2003, 653 : 213 - 221
  • [43] Interdiffusion in InGaAs/GaAs and InGaAs/GaAsP quantum wells
    Oster, A
    Bugge, F
    Gramlich, S
    Procop, M
    Zeimer, U
    Weyers, M
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1997, 44 (1-3): : 20 - 23
  • [44] Interdiffusion in InGaAs/GaAs and InGaAs/GaAsP quantum wells
    Ferdinand-Braun-Inst fuer, Hoechstfrequenztechnik Berlin, Berlin, Germany
    Mater Sci Eng B Solid State Adv Technol, 1-3 (20-23):
  • [45] Effect oF InGaP barrier thickness on the performance of 1.3-μm InAsP/InP/InGaP strain-compensated multiple-quantum-well laser diodes
    Lee, CY
    Chen, LC
    Lin, CC
    Wu, MC
    Peng, DJ
    Ho, WJ
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 2002, 41 (6B): : L697 - L699
  • [46] Strain-Compensated InGaAs Terahertz Quantum Cascade Lasers
    Ohtani, Keita
    Beck, Mattias
    Faist, Jerome
    ACS PHOTONICS, 2016, 3 (12): : 2297 - 2302
  • [47] InGaAs/AlAsSb/InP strain compensated quantum cascade lasers
    Revin, D. G.
    Cockburn, J. W.
    Steer, M. J.
    Airey, R. J.
    Hopkinson, M.
    Krysa, A. B.
    Wilson, L. R.
    Menzel, S.
    APPLIED PHYSICS LETTERS, 2007, 90 (15)
  • [48] Modeling of InGaP/InGaAs-GaAsP/Ge multiple quantum well solar cell to improve efficiency for space applications
    Kotamraju, Siva
    Sukeerthi, M.
    Puthanveettil, Suresh E.
    SOLAR ENERGY, 2019, 186 : 328 - 334
  • [49] Transient characteristics of the InGaP-GaAs-InGaAs-GaAs transistor laser
    Habib, Md Ahsan
    Ullah, Saeed Mahmud
    Rafique, Shahida
    OPTICAL AND QUANTUM ELECTRONICS, 2013, 45 (06) : 543 - 547
  • [50] Growth of strain-compensated GaInNAs/GaAsP quantum wells for 1.3 μm lasers
    Li, W
    Turpeinen, J
    Melanen, P
    Savolainen, P
    Uusimaa, P
    Pessa, M
    JOURNAL OF CRYSTAL GROWTH, 2001, 230 (3-4) : 533 - 536