Unravelling the interplay of local structure and physical properties in phase-change materials

被引:285
|
作者
Welnic, W
Pamungkas, A
Detemple, R
Steimer, C
Blügel, S
Wuttig, M [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Phys IA 1, D-52056 Aachen, Germany
[2] Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany
关键词
D O I
10.1038/nmat1539
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As the chemical bonds in a covalent semiconductor are independent of long-range order, semiconductors generally have similar local arrangements not only in the crystalline, but also in the amorphous phase. In contrast, the compound Ge(2)Sb(2)Te(5), which is a prototype phase-change material used in optical and electronic data storage, has been shown to undergo a profound change in local order on amorphization. In this work, ab initio ground state calculations are used to unravel the origin of the local order in the crystalline cubic and the amorphous phase of GeSbTe alloys and the resulting physical properties. Our study shows that this class of materials is characterized by two competing structures with similar energy but different local order and different physical properties. We explain both the local distortions found in the crystalline phase and the occurrence of octahedral and tetrahedral coordination in the amorphous state. Although the atomic rearrangement is most pronounced for the Ge atoms, the strongest change of the electronic states affects the Te states close to the Fermi energy, resulting in a pronounced change of electronic properties such as an increased energy gap.
引用
收藏
页码:56 / 62
页数:7
相关论文
共 50 条
  • [41] ABSORPTION OF PHASE-CHANGE MATERIALS IN CONCRETE
    HAWES, DW
    FELDMAN, D
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1992, 27 (02) : 91 - 101
  • [42] Defects in amorphous phase-change materials
    Jennifer Luckas
    Daniel Krebs
    Stephanie Grothe
    Josef Klomfaß
    Reinhard Carius
    Christophe Longeaud
    Matthias Wuttig
    Journal of Materials Research, 2013, 28 : 1139 - 1147
  • [43] The Myth of "Metavalency" in Phase-Change Materials
    Jones, Robert O.
    Elliott, Stephen R.
    Dronskowski, Richard
    ADVANCED MATERIALS, 2023, 35 (30)
  • [44] PHASE-CHANGE MATERIALS Fast transformers
    Wuttig, Matthias
    Salinga, Martin
    NATURE MATERIALS, 2012, 11 (04) : 270 - 271
  • [45] Modeling InSe phase-change materials
    Kohary, K
    Burlakov, VM
    Nguyen-Manh, D
    Pettifor, DG
    ADVANCED DATA STORAGE MATERIALS AND CHARACTERIZATION TECHNIQUES, 2004, 803 : 173 - 178
  • [46] Reversible switching in phase-change materials
    Welnic, Wojciech
    Wuttig, Matthias
    MATERIALS TODAY, 2008, 11 (06) : 20 - 27
  • [47] Oxygen Tuned Local Structure and Phase-Change Performance of Germanium Telluride
    Zhou, Xilin
    Du, Yonghua
    Behera, Jitendra K.
    Wu, Liangcai
    Songs, Zhitang
    Simpson, Robert E.
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (31) : 20185 - 20191
  • [48] Inkjet Printing of Phase-Change Materials
    Voit, Wolfgang
    Zapka, Warner
    Menzel, Andreas
    Mezger, Florian
    Sutter, Tom
    NIP24/DIGITAL FABRICATION 2008: 24TH INTERNATIONAL CONFERENCE ON DIGITAL PRINTING TECHNOLOGIES, TECHNICAL PROGRAM AND PROCEEDINGS, 2008, : 678 - +
  • [49] From phase-change materials to thermoelectrics?
    Schneider, Matthias N.
    Rosenthal, Tobias
    Stiewe, Christian
    Oeckler, Oliver
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE-CRYSTALLINE MATERIALS, 2010, 225 (11): : 463 - 470
  • [50] Phase-change materials in electronics and photonics
    Wei Zhang
    Riccardo Mazzarello
    Evan Ma
    MRS Bulletin, 2019, 44 : 686 - 690