The associativity equations in the two-dimensional topological field theory as integrable Hamiltonian nondiagonalizable systems of hydrodynamic type

被引:17
|
作者
Ferapontov, EV [1 ]
Mokhov, OI [1 ]
机构
[1] VA STEKLOV MATH INST,MOSCOW 117333,RUSSIA
关键词
D O I
10.1007/BF02509506
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:195 / 203
页数:9
相关论文
共 50 条
  • [31] Classification of integrable two-component Hamiltonian systems of hydrodynamic type in 2+1 dimensions
    Ferapontov, E. V.
    Odesskii, A. V.
    Stoilov, N. M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (07)
  • [32] Symmetry constraints for dispersionless integrable equations and systems of hydrodynamic type
    Bogdanov, LV
    Konopelchenko, BG
    PHYSICS LETTERS A, 2004, 330 (06) : 448 - 459
  • [33] BILOCAL RECURSION STRUCTURE OF TWO-DIMENSIONAL INTEGRABLE EQUATIONS
    KONOPELCHENKO, BG
    PHYSICS LETTERS A, 1987, 123 (09) : 451 - 458
  • [34] Orbital magnetism in two-dimensional integrable systems
    Gurevich, E
    Shapiro, B
    JOURNAL DE PHYSIQUE I, 1997, 7 (06): : 807 - 820
  • [35] Description of the n-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type, I: Integration of the Lame equations
    Zakharov, VE
    DUKE MATHEMATICAL JOURNAL, 1998, 94 (01) : 103 - 139
  • [36] TWO-DIMENSIONAL COMPLETELY INTEGRABLE SYSTEMS ARE EVOLUTION OF 2 COMMUTING HAMILTONIAN FLOWS ON INFINITE DIMENSIONAL SYMPLECTIC MANIFOLD
    CHUDNOVSKY, D
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 289 (16): : 837 - 840
  • [37] A BORDISM THEORY FOR INTEGRABLE NONDEGENERATE HAMILTONIAN-SYSTEMS WITH 2-DEGREES OF FREEDOM - A NEW TOPOLOGICAL INVARIANT OF HIGHER-DIMENSIONAL INTEGRABLE SYSTEMS
    FOMENKO, AT
    MATHEMATICS OF THE USSR-IZVESTIYA, 1992, 39 (01): : 731 - 759
  • [38] Integrable (2+1)-dimensional systems of hydrodynamic type
    A. V. Odesskii
    V. V. Sokolov
    Theoretical and Mathematical Physics, 2010, 163 : 549 - 586
  • [39] Integrable (2+1)-dimensional systems of hydrodynamic type
    Odesskii, A. V.
    Sokolov, V. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2010, 163 (02) : 549 - 586
  • [40] Two-dimensional topological photonic systems
    Sun, Xiao-Chen
    He, Cheng
    Liu, Xiao-Ping
    Lu, Ming-Hui
    Zhu, Shi-Ning
    Chen, Yan-Feng
    PROGRESS IN QUANTUM ELECTRONICS, 2017, 55 : 52 - 73