On super edge-magic decomposable graphs

被引:1
|
作者
Lopez, S. C. [1 ]
Muntaner-Batle, F. A. [2 ]
Rius-Font, M. [1 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 4, Castelldefels 08860, Spain
[2] Univ Newcastle, Fac Engn & Built Environm, Sch Elect Engn & Comp Sci, Graph Theory & Applicat Res Grp, Callaghan, NSW 2308, Australia
来源
关键词
Super edge-magic decomposable; circle times(h)-product;
D O I
10.1007/s13226-012-0028-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be any graph and let {H (i) } (iaI) be a family of graphs such that when i not equal j, a(a) (iaI) E(H (i) ) = E(G) and for all i a I. In this paper we introduce the concept of {H (i) } (iaI) -super edge-magic decomposable graphs and {H (i) } (iaI) -super edge-magic labelings. We say that G is {H (i) } (iaI) -super edge-magic decomposable if there is a bijection beta: V(G) -> {1,2,..., |V(G)|} such that for each i a I the subgraph H (i) meets the following two requirements: beta(V(H (i) )) = {1,2,..., |V(H (i) )|} and {beta(a) +beta(b): ab a E(H (i) )} is a set of consecutive integers. Such function beta is called an {H (i) } (iaI) -super edge-magic labeling of G. We characterize the set of cycles C (n) which are {H (1), H (2)}-super edge-magic decomposable when both, H (1) and H (2) are isomorphic to (n/2)K (2). New lines of research are also suggested.
引用
收藏
页码:455 / 473
页数:19
相关论文
共 50 条
  • [11] On the new families of (super) edge-magic graphs
    Ngurah, A. A. G.
    Baskoro, E. T.
    Simanjuntak, R.
    UTILITAS MATHEMATICA, 2007, 74 : 111 - 120
  • [12] On Super Edge-Magic Strength and Deficiency of Graphs
    Ngurah, A. A. G.
    Baskoro, E. T.
    Simanjuntak, R.
    Uttunggadewa, S.
    COMPUTATIONAL GEOMETRY AND GRAPH THEORY, 2008, 4535 : 144 - 154
  • [13] FURTHER RESULTS ON SUPER EDGE-MAGIC GRAPHS
    不详
    UTILITAS MATHEMATICA, 2019, 110 : 283 - 291
  • [14] On Super Edge-Magic Deficiency of Unicyclic Graphs
    Ahmad, Ali
    Muntaner-Batle, F. A.
    UTILITAS MATHEMATICA, 2015, 98 : 379 - 386
  • [15] ON SUPER EDGE-MAGIC DEFICIENCY OF CERTAIN GRAPHS
    Chaudhary, M. U.
    Sarfraz, A. A.
    UTILITAS MATHEMATICA, 2020, 116 : 73 - 81
  • [16] STAR SUPER EDGE-MAGIC DEFICIENCY OF GRAPHS
    Kathiresan, K. M.
    Madha, S. Sabarimalai
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2017, 12 (01) : 143 - 156
  • [17] On the super edge-magic deficiency of some graphs
    Krisnawati, Vira Hari
    Ngurah, Anak Agung Gede
    Hidayat, Noor
    Alghofari, Abdul Rouf
    HELIYON, 2020, 6 (11)
  • [18] ON THE SEQUENTIAL NUMBER AND SUPER EDGE-MAGIC DEFICIENCY OF GRAPHS
    Figueroa-Centeno, R. M.
    Ichishima, R.
    ARS COMBINATORIA, 2016, 129 : 157 - 163
  • [19] On super edge-magic deficiency of certain Toeplitz graphs
    Ahmad, Ali
    Nadeem, Muhammad Faisal
    Gupta, Ashok
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (03): : 513 - 519
  • [20] Super edge-magic total labeling of combination graphs
    Li, Jingwen
    Wang, Bimei
    Gu, Yanbo
    Shao, Shuhong
    Engineering Letters, 2020, 28 (02): : 412 - 419