ANOMALOUS DIFFUSION FOR MULTI-DIMENSIONAL CRITICAL KINETIC FOKKER-PLANCK EQUATIONS

被引:4
|
作者
Fournier, Nicolas [1 ]
Tardif, Camille [1 ]
机构
[1] Sorbonne Univ, LPSM, Paris, France
来源
ANNALS OF PROBABILITY | 2020年 / 48卷 / 05期
关键词
Kinetic diffusion process; kinetic Fokker-Planck equation; heavy-tailed equilibrium; anomalous diffusion phenomena; Bessel processes; stable processes; local times; central limit theorem; homogenization; LIMIT; APPROXIMATION; DISTRIBUTIONS; FUNCTIONALS; TIME;
D O I
10.1214/20-AOP1426
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a particle moving in d >= 2 dimensions, its velocity being a reversible diffusion process, with identity diffusion coefficient, of which the invariant measure behaves, roughly, like (1 + vertical bar v vertical bar)(-beta) as vertical bar v vertical bar -> infinity, for some constant beta > 0. We prove that for large times, after a suitable rescaling, the position process resembles a Brownian motion if beta >= 4 + d, a stable process if beta is an element of [d, 4 + d) and an integrated multi-dimensional generalization of a Bessel process if beta is an element of (d - 2, d). The critical cases beta = d, beta =1+ d and beta = 4 + d require special rescalings.
引用
收藏
页码:2359 / 2403
页数:45
相关论文
共 50 条
  • [21] Numerical solution of two dimensional Fokker-Planck equations
    Zorzano, M.P.
    Mais, H.
    Vazquez, L.
    Applied Mathematics and Computation (New York), 1999, 98 (2-3): : 109 - 117
  • [22] Numerical solution of two dimensional Fokker-Planck equations
    Zorzano, MP
    Mais, H
    Vazquez, L
    APPLIED MATHEMATICS AND COMPUTATION, 1999, 98 (2-3) : 109 - 117
  • [23] DIFFUSION LIMIT FOR KINETIC FOKKER-PLANCK EQUATION WITH HEAVY TAILS EQUILIBRIA: THE CRITICAL CASE
    Cattiaux, Patrick
    Nasreddine, Elissar
    Puel, Marjolaine
    KINETIC AND RELATED MODELS, 2019, 12 (04) : 727 - 748
  • [24] Invariants of Fokker-Planck equations
    Sumiyoshi Abe
    The European Physical Journal Special Topics, 2017, 226 : 529 - 532
  • [25] Invariants of Fokker-Planck equations
    Abe, Sumiyoshi
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (03): : 529 - 532
  • [26] Deformed fokker-planck equations
    Ho, Choon-Lin
    Sasaki, Ryu
    PROGRESS OF THEORETICAL PHYSICS, 2007, 118 (04): : 667 - 674
  • [27] GEOMETRIC FOKKER-PLANCK EQUATIONS
    Lebeau, Gilles
    PORTUGALIAE MATHEMATICA, 2005, 62 (04) : 469 - 530
  • [28] Fractal and generalized Fokker-Planck equations: description of the characterization of anomalous diffusion in magnetic resonance imaging
    Fa, Kwok Sau
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
  • [29] GLOBAL CLASSICAL SOLUTIONS FOR QUANTUM KINETIC FOKKER-PLANCK EQUATIONS
    罗兰
    张新平
    Acta Mathematica Scientia, 2015, 35 (01) : 140 - 156
  • [30] A METHOD OF SOLVING FOKKER-PLANCK KINETIC-EQUATIONS FOR A PLASMA
    NOVIKOV, VN
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1990, 30 (03): : 198 - 206