Modeling and simulation of high-efficiency GaAs PIN solar cells

被引:18
|
作者
Imran, Ali [1 ]
Sulaman, Muhammad [2 ,3 ]
Song, Yong [2 ]
Eric, Deborah [2 ]
Zahid, Muhammad Noaman [2 ]
Yousaf, Muhammad [4 ]
Saleem, Muhammad Imran [3 ]
Li, Maoyuan [2 ]
Li, Duo [1 ]
机构
[1] Peking Univ, State Key Lab Artificial Microstruct & Mesoscop, Sch Phys, Beijing 100871, Peoples R China
[2] Beijing Inst Technol, Beijing Key Lab Precis Optoelect Measurement Inst, Sch Opt & Photon, Beijing 100081, Peoples R China
[3] Beijing Inst Technol, Beijing Key Lab Nanophoton & Ultrafine Optoelect, Sch Phys, Beijing 100081, Peoples R China
[4] Peking Univ, Dept Mat Sci & Engn, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Solar cell; Mobility; Lifetime; Recombination; SURFACE RECOMBINATION VELOCITY; RENEWABLE ENERGY; DIFFUSION LENGTH; LIFETIME; SEMICONDUCTORS; OPTIMIZATION; DIODES; SI;
D O I
10.1007/s10825-020-01583-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A theoretical model for GaAs-based solar cells with PIN structure is proposed herein. The effect of varying key parameters on the conversion efficiency is investigated. The simulations are performed using COMSOL Multiphysics software. The mobilities of electrons and holes are varied in combination with the lifetime (LT). As a result, a maximum efficiency of 10.81% is achieved by setting the electron and hole mobility to 1.5k cm(2) V-1 s(-1)and 0.3k cm(2) V-1 s(-1), respectively. The electron and hole carrier LT are 3 ns and 7 ns, respectively, for the maximum output. The effect of the surface recombination velocity (SRV) is also studied, and a maximum efficiency of 13.75% is achieved for an SRV of 1k ms(-1)for electrons and holes. The results show that higher photovoltaic efficiencies can be achieved by increasing the mobility and carrier LT while decreasing the surface recombination velocities.
引用
收藏
页码:310 / 316
页数:7
相关论文
共 50 条
  • [41] HIGH-EFFICIENCY GA1-XALXAS-GAAS SOLAR-CELLS
    WOODALL, JM
    HOVEL, HJ
    SOLAR CELLS, 1990, 29 (2-3): : 167 - 172
  • [42] High-Efficiency Perovskite Solar Cells
    Kim, Jin Young
    Lee, Jin-Wook
    Jung, Hyun Suk
    Shin, Hyunjung
    Park, Nam-Gyu
    CHEMICAL REVIEWS, 2020, 120 (15) : 7867 - 7918
  • [43] High-Efficiency Multijunction Solar Cells
    Frank Dimroth
    Sarah Kurtz
    MRS Bulletin, 2007, 32 : 230 - 235
  • [44] High-efficiency silicon solar cells
    Bouazzi, Ahmed S., 2000, IEEE, Piscataway, NJ, United States (19):
  • [45] High-efficiency multijunction solar cells
    Dimroth, Frank
    Kurtz, Sarah
    MRS BULLETIN, 2007, 32 (03) : 230 - 235
  • [46] HIGH-VOLUME PRODUCTION OF RUGGED, HIGH-EFFICIENCY GAAS/GE SOLAR-CELLS
    YEH, YCM
    CHANG, KI
    CHENG, CH
    HO, F
    ILES, P
    CONFERENCE RECORD OF THE TWENTIETH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE - 1988, VOLS 1-2, 1988, : 451 - 456
  • [47] High-Efficiency GaAs Solar Cells Grown on Porous Germanium Substrate with PEELER Technology
    Daniel, Valentin
    Bidaud, Thomas
    Chretien, Jeremie
    Paupy, Nicolas
    Ayari, Ahmed
    Diallo, Thierno Mamoudou
    Hanus, Tadeas
    Henriques, Jonathan
    Jaouad, Abdelatif
    Lerat, Jean-Francois
    Ilahi, Bouraoui
    Cho, Jinyoun
    Dessein, Kristof
    Dubuc, Christian
    Hamon, Gwenaelle
    Boucherif, Abderraouf
    Darnon, Maxime
    SOLAR RRL, 2023, 8 (01)
  • [48] Investigation of high-efficiency InGaP/GaAs tandem solar cells under concentration operation
    Yang, M.
    Takamoto, T.
    Ikeda, E.
    Kurita, H.
    Yamaguchi, M.
    Japanese Journal of Applied Physics, Part 2: Letters, 1998, 37 (07):
  • [49] LARGE-AREA HIGH-EFFICIENCY (ALGA)AS-GAAS SOLAR-CELLS
    KAMATH, GS
    EWAN, J
    KNECHTLI, RC
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1977, 24 (04) : 473 - 475
  • [50] Investigation of high-efficiency InGaP/GaAs tandem solar cells under concentration operation
    Yang, MJ
    Takamoto, T
    Ikeda, E
    Kurita, H
    Yamaguchi, M
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 1998, 37 (7B): : L836 - L838