Embedding the Erdos-Renyi hypergraph into the random regular hypergraph and Hamiltonicity

被引:14
|
作者
Dudek, Andrzej [1 ]
Frieze, Alan [2 ]
Rucinski, Andrzej [3 ]
Sileikis, Matas [4 ]
机构
[1] Western Michigan Univ, Dept Math, Kalamazoo, MI 49008 USA
[2] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[3] Adam Mickiewicz Univ, Dept Discrete Math, Poznan, Poland
[4] Charles Univ Prague, Dept Appl Math, Prague, Czech Republic
关键词
Random regular graph; Random hypergraph; Hamilton cycle; Monotone graph property; GRAPHS;
D O I
10.1016/j.jctb.2016.09.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish an inclusion relation between two uniform models of random k-graphs (for constant k >= 2) on n labeled vertices: G((k)) (n, m), the random k-graph with m edges, and R-(k) (n, d), the random d-regular k-graph. We show that if n log n << m << n(k) we can choose d = d(n) similar to km/n and couple G((k)) (n, m) and R-(k) (n, d) so that the latter contains the former with probability tending to one as n -> infinity. This extends an earlier result of Kim and Vu about "sandwiching random graphs". In view of known threshold theorems on the existence of different types of Hamilton cycles in G((k))(n, m), our result allows us to find conditions under which R-(k)(n, d) is Hamiltonian. In particular, for k >= 3 we conclude that if n(k-2) << d << n(k-1), then a.a.s. R-(k)(n, d) contains a tight Hamilton cycle. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:719 / 740
页数:22
相关论文
共 50 条
  • [31] LACK OF HYPERBOLICITY IN ASYMPTOTIC ERDOS-RENYI SPARSE RANDOM GRAPHS
    Narayan, Onuttom
    Saniee, Iraj
    Tucci, Gabriel H.
    INTERNET MATHEMATICS, 2015, 11 (03) : 277 - 288
  • [32] First-passage properties of the Erdos-Renyi random graph
    Sood, V
    Redner, S
    Ben-Avraham, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (01): : 109 - 123
  • [33] On hitting times for a simple random walk on dense Erdos-Renyi random graphs
    Loewe, Matthias
    Torres, Felipe
    STATISTICS & PROBABILITY LETTERS, 2014, 89 : 81 - 88
  • [34] ON GENERAL VERSIONS OF ERDOS-RENYI LAWS
    STEINEBACH, J
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 56 (04): : 549 - 554
  • [35] Approximating the Cumulant Generating Function of Triangles in the Erdos-Renyi Random Graph
    Giardina, Cristian
    Giberti, Claudio
    Magnanini, Elena
    JOURNAL OF STATISTICAL PHYSICS, 2021, 182 (02)
  • [36] Fluctuations of the Magnetization for Ising Models on Dense Erdos-Renyi Random Graphs
    Kabluchko, Zakhar
    Lowe, Matthias
    Schubert, Kristina
    JOURNAL OF STATISTICAL PHYSICS, 2019, 177 (01) : 78 - 94
  • [37] Learning Erdos-Renyi Random Graphs via Edge Detecting Queries
    Li, Zihan
    Fresacher, Matthias
    Scarlett, Jonathan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [38] SCALING LIMIT OF DYNAMICAL PERCOLATION ON CRITICAL ERDOS-RENYI RANDOM GRAPHS
    Rossignol, Raphael
    ANNALS OF PROBABILITY, 2021, 49 (01): : 322 - 399
  • [39] Spectra of adjacency and Laplacian matrices of inhomogeneous Erdos-Renyi random graphs
    Chakrabarty, Arijit
    Hazra, Rajat Subhra
    den Hollander, Frank
    Sfragara, Matteo
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2021, 10 (01)
  • [40] On the Erdos-Renyi maximum of partial sums
    Novak, SY
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1998, 42 (02) : 254 - 270