Instance-based Service Discovery with WSMO/WSML and WSMX

被引:0
|
作者
Zaremba, Maciej [1 ]
Moran, Matthew [1 ]
Vitvar, Tomas [2 ]
机构
[1] Natl Univ Ireland, Digital Enterprise Res Inst, Galway, Ireland
[2] Univ Innsbruck, Semant Tech Inst Innsbruck, Innsbruck, Austria
关键词
D O I
10.1007/978-0-387-72496-6_10
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this chapter we present the solution based on WSMO[6], WSML [8]) and WSMX[3] to solving SWS Challenge discovery tasks. Web Service Modeling Ontology (WSMO) provides a model for Semantic Web services used for defining ontologies, services, goals and mediators. Web Service Modelling Language (WSML) provides a family of ontology languages used to formally describe WSMO elements used for service modelling, while Web Service Execution Environment (WSMX) is a middleware platform used for discovery, composition, execution and mediation of Semantic Web services. WSMO, WSML and WSMX form a coherent framework covering all aspects of the Semantic Web services that we use to address SWS Challenge discovery scenario.
引用
收藏
页码:169 / +
页数:3
相关论文
共 50 条
  • [31] Hybrid algorithms with instance-based classification
    Hendrickx, I
    van den Bosch, A
    MACHINE LEARNING: ECML 2005, PROCEEDINGS, 2005, 3720 : 158 - 169
  • [32] Vectorizing Instance-Based Integration Processes
    Boehm, Matthias
    Habich, Dirk
    Preissler, Steffen
    Lehner, Wolfgang
    Wloka, Uwe
    ENTERPRISE INFORMATION SYSTEMS-BK, 2009, 24 : 40 - +
  • [33] Instance-Based Neural Dependency Parsing
    Ouchi, Hiroki
    Suzuki, Jun
    Kobayashi, Sosuke
    Yokoi, Sho
    Kuribayashi, Tatsuki
    Yoshikawa, Masashi
    Inui, Kentaro
    TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2021, 9 : 1493 - 1507
  • [34] Instance-based natural language generation
    Varges, S.
    Mellish, C.
    NATURAL LANGUAGE ENGINEERING, 2010, 16 : 309 - 346
  • [35] Classification by instance-based learning algorithm
    Bao, YG
    Tsuchiya, E
    Ishii, N
    Du, XY
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING IDEAL 2005, PROCEEDINGS, 2005, 3578 : 133 - 140
  • [36] On the Possibility of Instance-Based Stroke Recovery
    Iwakiri, Yutaro
    Shiraishi, Soma
    Feng, Yaokai
    Uchida, Seiichi
    13TH INTERNATIONAL CONFERENCE ON FRONTIERS IN HANDWRITING RECOGNITION (ICFHR 2012), 2012, : 29 - 34
  • [37] A cooperative coevolutionary algorithm for instance selection for instance-based learning
    Nicolás García-Pedrajas
    Juan Antonio Romero del Castillo
    Domingo Ortiz-Boyer
    Machine Learning, 2010, 78 : 381 - 420
  • [38] A cooperative coevolutionary algorithm for instance selection for instance-based learning
    Garcia-Pedrajas, Nicolas
    Antonio Romero del Castillo, Juan
    Ortiz-Boyer, Domingo
    MACHINE LEARNING, 2010, 78 (03) : 381 - 420
  • [39] Prototype Selection for Multilabel Instance-Based Learning
    Filippakis, Panagiotis
    Ougiaroglou, Stefanos
    Evangelidis, Georgios
    INFORMATION, 2023, 14 (10)
  • [40] Robustness analyses of instance-based collaborative recommendation
    Kushmerick, N
    MACHINE LEARNING: ECML 2002, 2002, 2430 : 232 - 244