Instance-based Service Discovery with WSMO/WSML and WSMX

被引:0
|
作者
Zaremba, Maciej [1 ]
Moran, Matthew [1 ]
Vitvar, Tomas [2 ]
机构
[1] Natl Univ Ireland, Digital Enterprise Res Inst, Galway, Ireland
[2] Univ Innsbruck, Semant Tech Inst Innsbruck, Innsbruck, Austria
关键词
D O I
10.1007/978-0-387-72496-6_10
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this chapter we present the solution based on WSMO[6], WSML [8]) and WSMX[3] to solving SWS Challenge discovery tasks. Web Service Modeling Ontology (WSMO) provides a model for Semantic Web services used for defining ontologies, services, goals and mediators. Web Service Modelling Language (WSML) provides a family of ontology languages used to formally describe WSMO elements used for service modelling, while Web Service Execution Environment (WSMX) is a middleware platform used for discovery, composition, execution and mediation of Semantic Web services. WSMO, WSML and WSMX form a coherent framework covering all aspects of the Semantic Web services that we use to address SWS Challenge discovery scenario.
引用
收藏
页码:169 / +
页数:3
相关论文
共 50 条
  • [1] WWW: WSMO, WSML, and WSMX in a nutshell
    Roman, Dumitru
    De Bruijn, Jos
    Mocan, Adrian
    Lausen, Holger
    Domingue, John
    Bussler, Christoph
    Fensel, Dieter
    SEMANTIC WEB - ASWC 2006, PROCEEDINGS, 2006, 4185 : 516 - 522
  • [2] Mediation using WSMO, WSML and WSMX
    Vitvar, Tomas
    Zaremba, Maciej
    Moran, Matthew
    Mocan, Adrian
    SEMANTIC WEB SERVICES CHALLENGE: RESULTS FROM THE FIRST YEAR, 2009, 8 : 31 - +
  • [3] How to create a WSMO-based semantic service without knowing WSML
    Agre, Gennady
    Dilov, Ivan
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2007 WORKSHOPS, 2007, 4832 : 217 - +
  • [4] DeEPs: A New Instance-Based Lazy Discovery and Classification System
    Jinyan Li
    Guozhu Dong
    Kotagiri Ramamohanarao
    Limsoon Wong
    Machine Learning, 2004, 54 : 99 - 124
  • [5] DeEPs: A new instance-based lazy discovery and classification system
    Li, JY
    Dong, GZ
    Ramamohanarao, K
    Wong, LS
    MACHINE LEARNING, 2004, 54 (02) : 99 - 124
  • [6] Instance-based manifesto?
    Jelasity, M
    BEHAVIORAL AND BRAIN SCIENCES, 2000, 23 (04) : 482 - +
  • [7] Instance-Based Ontology Matching by Instance Enrichment
    Schopman, Balthasar
    Wang, Shenghui
    Isaac, Antoine
    Schlobach, Stefan
    JOURNAL ON DATA SEMANTICS, 2012, 1 (04) : 219 - 236
  • [8] Instance selection based on boosting for instance-based learners
    de Haro-Garcia, Aida
    Cerruela-Garcia, Gonzalo
    Garcia-Pedrajas, Nicolas
    PATTERN RECOGNITION, 2019, 96
  • [9] Making Instance-based Learning Theory usable and understandable: The Instance-based Learning Tool
    Dutt, Varun
    Gonzalez, Cleotilde
    COMPUTERS IN HUMAN BEHAVIOR, 2012, 28 (04) : 1227 - 1240
  • [10] Instance-based learning by searching
    Fuchs, M
    INTELLIGENT INFORMATION SYSTEMS, (IIS'97) PROCEEDINGS, 1997, : 189 - 193