A VLSI-Efficient Signed Magnitude Comparator for {2n-1, 2n,2n+1-1} RNS

被引:0
|
作者
Kumar, Sachin [1 ]
Chang, Chip-Hong [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
关键词
RESIDUE NUMBER SYSTEM; CHINESE REMAINDER THEOREM; ALGORITHM;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Comparison of residue representations in signed Residue Number System (RNS) involves sign detection and magnitude comparison. Both are difficult operations in RNS. This paper proposes a new signed magnitude comparator for the three-moduli set RNS {2(n)-1, 2(n), 2(n+1)-1}. Two subrange identifiers are computed to simplify sign detection and accelerate the magnitude comparison without requiring full reverse conversion, large modulo adders or lookup tables. Synthesis results in 65 nm CMOS standard cell implementation show that it even outperforms the most efficient unsigned magnitude comparator for equally balanced special three-moduli set by significant margin in terms of area, delay and power consumption.
引用
收藏
页码:1966 / 1969
页数:4
相关论文
共 50 条
  • [21] Fast Sign Detection for RNS (2n-1, 2n, 2n+1)
    Tomczak, Tadeusz
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2008, 55 (06) : 1502 - 1511
  • [22] Reverse Converters for the Moduli Set {{2n, 2n-1-1, 2n-1, 2n+1-1}( n Even)
    Mohan, P. V. Ananda
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (08) : 3605 - 3634
  • [23] Area-Power Efficient Modulo 2n-1 and Modulo 2n+1 Multipliers for {2n-1, 2n, 2n+1} Based RNS
    Muralidharan, Ramya
    Chang, Chip-Hong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2012, 59 (10) : 2263 - 2274
  • [24] RNS Division Algorithm for 2n-1 and 2n dividers
    Labafniya, Mansoureh
    Eshghi, Mohammad
    2014 22ND IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2014, : 955 - 958
  • [25] High Speed Comparator for the Moduli {2n, 2n-1, 2n+1}
    Li, Lei
    Li, Guodong
    Zhao, Yingxu
    Yin, Pengsheng
    Zhou, Wanting
    IEICE ELECTRONICS EXPRESS, 2013, 10 (21):
  • [26] A Scaler Design for the RNS Three-Moduli Set {2n+1-1, 2n, 2n-1} Based on Mixed-Radix Conversion
    Hiasat, Ahmad
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2020, 29 (03)
  • [27] Fully parallel comparator for the moduli set {2n, 2n-1, 2n+1}
    Eivazi, Shiva Taghipour
    Hosseinzadeh, Mehdi
    Mirmotahari, Omid
    IEICE ELECTRONICS EXPRESS, 2011, 8 (12): : 897 - 901
  • [28] A memoryless reverse converter for the 4-moduli superset {2n-1, 2n, 2n+1, 2n+1-1}
    Vinod, AP
    Premkumar, AB
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2000, 10 (1-2) : 85 - 99
  • [29] New efficient residue-to-binary converters for 4-moduli set {2n-1, 2n, 2n+1, 2n+1-1}
    Cao, B
    Chang, CH
    Srikanthan, T
    PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL IV: DIGITAL SIGNAL PROCESSING-COMPUTER AIDED NETWORK DESIGN-ADVANCED TECHNOLOGY, 2003, : 536 - 539
  • [30] Design of Reverse Converters for General RNS Moduli Sets {2k, 2n-1, 2n+1, 2n+1-1} and {2k, 2n-1, 2n+1, 2n-1-1} (n even)
    Patronik, Piotr
    Piestrak, Stanislaw J.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2014, 61 (06) : 1687 - 1700