Pruning multi-view stereo net for efficient 3D reconstruction

被引:15
|
作者
Xiang, Xiang [1 ]
Wang, Zhiyuan [2 ]
Lao, Shanshan [2 ]
Zhang, Baochang [2 ,3 ]
机构
[1] Johns Hopkins Univ, Baltimore, MD 21218 USA
[2] Beihang Univ, Beijing, Peoples R China
[3] Shenzhen Acad Aerosp Technol, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-view stereo; 3D reconstruction; Deep learning; Network pruning; Efficiency;
D O I
10.1016/j.isprsjprs.2020.06.018
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
How can we perform an efficient 3D reconstruction with high accuracy and completeness, in the presence of non-Lambertian surface and low textured regions? This paper aims at fast quality 3D reconstruction, best near real time. While deep learning approaches perform very well in multi-view stereo (MVS), the high complexity of models makes them inapplicable in practical applications. Few works were explored to accelerate deep learning-based 3D reconstruction approaches. In this paper, we take an unprecedented attempt to compress and accelerate these models via pruning their redundant parameters. We introduce an efficient channel pruning method for 2D convolutional neural networks (CNNs) based on a mixed back propagation process, where a soft mask is learned to prune the channels using a fast iterative shrinkage-thresholding algorithm. While in 3D CNNs, we train a large multiscale CNNs architecture and observe that only utilizing one module enough for the 3D reconstruction, which can still maintain the performance of the full-precision model. We achieve an efficient MVS reconstruction system up to 2 times faster, in contrast to the state-of-the-arts, while maintaining comparable model accuracy and even better completeness.
引用
收藏
页码:17 / 27
页数:11
相关论文
共 50 条
  • [21] A miniaturized phenotyping platform for individual plants using multi-view stereo 3D reconstruction
    Wu, Sheng
    Wen, Weiliang
    Gou, Wenbo
    Lu, Xianju
    Zhang, Wenqi
    Zheng, Chenxi
    Xiang, Zhiwei
    Chen, Liping
    Guo, Xinyu
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [22] A Scaled Monocular 3D Reconstruction Based on Structure from Motion and Multi-View Stereo
    Zhan, Zhiwen
    Yang, Fan
    Jiang, Jixin
    Du, Jialin
    Li, Fanxing
    Sun, Si
    Wei, Yan
    ELECTRONICS, 2024, 13 (19)
  • [23] A real sense 3D face reconstruction system based on multi-view stereo vision
    Li, Ke
    Zeng, Dong
    Zhang, Jun
    Lin, Rui
    Gao, Luobin
    Liao, Xiaoli
    Journal of Information and Computational Science, 2015, 12 (10): : 3739 - 3753
  • [24] 3D Texture Mapping in Multi-view Reconstruction
    Chen, Zhaolin
    Zhou, Jun
    Chen, Yisong
    Wang, Guoping
    ADVANCES IN VISUAL COMPUTING, ISVC 2012, PT I, 2012, 7431 : 359 - 371
  • [25] Image Selection in Photogrammetric Multi-View Stereo Methods for Metric and Complete 3D Reconstruction
    Ahmadabadian, Ali Hosseininaveh
    Robson, Stuart
    Boehm, Jan
    Shortis, Mark
    VIDEOMETRICS, RANGE IMAGING, AND APPLICATIONS XII; AND AUTOMATED VISUAL INSPECTION, 2013, 8791
  • [26] AN AUTOMATIC 3D RECONSTRUCTION METHOD BASED ON MULTI-VIEW STEREO VISION FOR THE MOGAO GROTTOES
    Xiong, Jie
    Zhong, Sidong
    Zheng, Lin
    INDOOR-OUTDOOR SEAMLESS MODELLING, MAPPING AND NAVIGATION, 2015, 44 (W5): : 171 - 176
  • [27] Accurate Multi-View Stereo 3D Reconstruction for Cost-Effective Plant Phenotyping
    Lou, Lu
    Liu, Yonghuai
    Han, Jiwan
    Doonan, John H.
    IMAGE ANALYSIS AND RECOGNITION, ICIAR 2014, PT II, 2014, 8815 : 349 - 356
  • [28] Evaluation of Multi-view 3D Reconstruction Software
    Scheoning, Julius
    Heidemann, Gunther
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2015, PT II, 2015, 9257 : 450 - 461
  • [29] 3D Reconstruction with Multi-view Texture Mapping
    Ye, Xiaodan
    Wang, Lianghao
    Li, Dongxiao
    Zhang, Ming
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT III, 2017, 10636 : 198 - 207
  • [30] Efficient Caching for Multi-View 3D Videos
    Lee, Ji-Tang
    Yang, De-Nian
    Liao, Wanjiun
    2016 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2016,