ON THE HAMILTON-JACOBI-BELLMAN EQUATION FOR AN OPTIMAL CONSUMPTION PROBLEM: I. EXISTENCE OF SOLUTION

被引:17
|
作者
Hata, Hiroaki [1 ]
Sheu, Shuenn-Jyi [2 ]
机构
[1] Univ Shizuoka, Dept Math, Fac Educ, Shizuoka 4228526, Japan
[2] Natl Cent Univ, Dept Math, Chungli 32054, Taiwan
关键词
optimal consumption problem; power utility; factor model; HJB equation; subsolution; supersolution; RISK-SENSITIVE CONTROL; INVESTMENT PROBLEMS; PORTFOLIO; DECISIONS; MODEL;
D O I
10.1137/110794845
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a consumption problem with an infinite time horizon to optimize the discounted expected power utility. The returns and volatilities of the assets are random and affected by some economic factors, modeled as diffusion process. The problem becomes a standard control problem. We derive the Hamilton-Jacobi-Bellman (HJB) equation and study its solutions. In Part I, under some weak conditions we prove the existence of a solution for this HJB equation when we assume the existence of an ordered pair of sub/supersolution. To construct an ordered pair of sub/supersolution, we also consider the risk-sensitive portfolio optimization problem. In Part II [Hata and Sheu, SIAM J. Control Optim., 50 (2012), pp. 2401-2430], we consider the uniqueness of the solution and prove the verification theorem.
引用
收藏
页码:2373 / 2400
页数:28
相关论文
共 50 条
  • [31] Power series solution of the Hamilton-Jacobi-Bellman equation for descriptor systems
    Sjoberg, Johan
    Glad, Torkel
    2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 6869 - 6874
  • [32] Existence of solutions to the Hamilton-Jacobi-Bellman equation under quadratic growth conditions
    Ito, K
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 176 (01) : 1 - 28
  • [33] Local solutions to the Hamilton-Jacobi-Bellman equation in stochastic problems of optimal control
    A. S. Bratus’
    D. V. Iourtchenko
    J. -L. Menaldi
    Doklady Mathematics, 2006, 74 : 610 - 613
  • [34] Local solutions to the Hamilton-Jacobi-Bellman equation in stochastic problems of optimal control
    Bratus, A. S.
    Iourtchenko, D. V.
    Menaldi, J.-L.
    DOKLADY MATHEMATICS, 2006, 74 (01) : 610 - 613
  • [35] Hamilton-Jacobi-Bellman equation for control systems with friction
    Tedone, Fabio
    Palladino, Michele
    arXiv, 2019,
  • [36] ON A PARABOLIC HAMILTON-JACOBI-BELLMAN EQUATION DEGENERATING AT THE BOUNDARY
    Castorina, Daniele
    Cesaroni, Annalisa
    Rossi, Luca
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (04) : 1251 - 1263
  • [37] Optimal Feedback Control of Cancer Chemotherapy Using Hamilton-Jacobi-Bellman Equation
    Jeong, Yong Dam
    Kim, Kwang Su
    Roh, Yunil
    Choi, Sooyoun
    Iwami, Shingo
    Jung, Il Hyo
    COMPLEXITY, 2022, 2022
  • [38] Nonconvex duality and viscosity solutions of the Hamilton-Jacobi-Bellman equation in optimal control
    Raïssi, N
    Serhani, M
    JOURNAL OF CONVEX ANALYSIS, 2002, 9 (02) : 625 - 648
  • [39] On the basis of the Hamilton-Jacobi-Bellman equation in economic dynamics
    Hosoya, Yuhki
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 446
  • [40] Fractional Order Version of the Hamilton-Jacobi-Bellman Equation
    Razminia, Abolhassan
    Asadizadehshiraz, Mehdi
    Torres, Delfim F. M.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2019, 14 (01):