Chromate reduction by immobilized palladized sulfate-reducing bacteria

被引:28
|
作者
Humphries, AC [1 ]
Mikheenko, IP [1 ]
Macaskie, LE [1 ]
机构
[1] Univ Birmingham, Sch Biosci, Birmingham, W Midlands, England
关键词
bioinorganic catalyst; chromium; immobilization; packed-bed reactor;
D O I
10.1002/bit.20814
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Resting cells of Desulfovibrio vulgaris NCIMB 8303 and Desulfovibrio desulfuricans NCIMB 8307 were used for the hydrogenase-mediated reduction of Pd(II) to Pd(0). The resulting hybrid palladium bionanocatalyst (Bio-Pd(0)) was used in the reduction of Cr(VI) to the less environmentally problematic Cr(III) species. The reduction of Cr(VI) by free and agar-immobilized Bio-Pd(0) was evaluated. Investigations using catalyst suspensions showed that Cr(VI) reduction was similar (similar to 170 nmol Cr(VI)/h/mg Bio-Pd(0)) when Bio-Pd(0) was produced using D. vulgaris or D. desulfuricans. Continuous-flow studies using D. vulgaris Bio-Pd(0) with agar as the immobilization matrix investigated the effect of Bio-Pd(0) loading, inlet Cr(VI) concentration, and flow rate on the efficiency of Cr(VI) reduction. Reduction of Cr(VI) was highest at a D. vulgaris Bio-Pd(0) loading of 7.5 mg Bio-Pd(0)/mL agar (3:1 dry cell wt: Pd(0)), an input [Cr(VI)] of 100 mu M, and a flow rate of 1.75 mL/h (approx. 3.5 column volumes/h). A mathematical interpretation predicted the activity of the immobilized Bio-Pd(0) for a given set of conditions within 5% of the value found by experiment. Considering the system as an 'artificial enzyme' analog and application of applied enzyme kinetics gave an apparent K, value (Km,pp) of 430 mu M Cr(VI) and a determined value of flow-through reactor activity which differed by 11% from that predicted mathematically. (c) 2006 Wiley Periodicals, Inc.
引用
收藏
页码:81 / 90
页数:10
相关论文
共 50 条
  • [31] Immobilizing U from solution by immobilized sulfate-reducing bacteria of Desulfovibrio desulfuricans
    Xu, HF
    Barton, LL
    PLUTONIUM FUTURES-THE SCIENCE, 2000, 532 : 274 - 274
  • [32] Rapid removal of uranium (VI) by phosphogypsum immobilized sulfate-reducing bacteria microspheres
    Xi, Xiangyu
    Wang, Zhilin
    Zhou, Lin
    Song, Han
    Han, Ying
    Dong, Faqin
    Zhou, Lei
    CHEMICAL ENGINEERING JOURNAL, 2024, 493
  • [33] CORROSION OF IRON BY SULFATE-REDUCING BACTERIA
    CROMBIE, DJ
    MOODY, GJ
    THOMAS, JDR
    CHEMISTRY & INDUSTRY, 1980, (12) : 500 - 504
  • [34] Metabolic flexibility of sulfate-reducing bacteria
    Plugge, Caroline M.
    Zhang, Weiwen
    Scholten, Johannes C. M.
    Stams, Alfons J. M.
    FRONTIERS IN MICROBIOLOGY, 2011, 2
  • [35] ENUMERATION AND ISOLATION OF SULFATE-REDUCING BACTERIA
    HERBERT, BN
    GILBERT, PD
    JOURNAL OF APPLIED BACTERIOLOGY, 1983, 55 (03): : R3 - R3
  • [36] Oxygen defense in sulfate-reducing bacteria
    Dolla, Alain
    Fournier, Marjorie
    Dermoun, Zorah
    JOURNAL OF BIOTECHNOLOGY, 2006, 126 (01) : 87 - 100
  • [37] Inhibition of sulfate-reducing bacteria with formate
    Voskuhl, L.
    Brusilova, D.
    Brauer, V. S.
    Meckenstock, R. U.
    FEMS MICROBIOLOGY ECOLOGY, 2022, 98 (01)
  • [38] CORRODING IRON AS A HYDROGEN SOURCE FOR SULFATE REDUCTION IN GROWING CULTURES OF SULFATE-REDUCING BACTERIA
    CORDRUWISCH, R
    WIDDEL, F
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1986, 25 (02) : 169 - 174
  • [39] CATHODIC DEPOLARIZATION BY SULFATE-REDUCING BACTERIA
    COSTELLO, JA
    SOUTH AFRICAN JOURNAL OF SCIENCE, 1974, 70 (07) : 202 - 204
  • [40] AEROBIC RESPIRATION IN SULFATE-REDUCING BACTERIA
    DILLING, W
    CYPIONKA, H
    FEMS MICROBIOLOGY LETTERS, 1990, 71 (1-2) : 123 - 127