Effects of heat flux, mass flux, vapor quality, and saturation temperature on flow boiling heat transfer in microchannels

被引:141
|
作者
Bertsch, Stefan S. [1 ,2 ]
Groll, Eckhard A. [1 ,2 ]
Garimella, Suresh V. [1 ]
机构
[1] Purdue Univ, Sch Mech Engn, Cooling Technol Res Ctr, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Mech Engn, Ray W Herrick Labs, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
PRESSURE-DROP; 2-PHASE FLOW; DIAMETER; REFRIGERANT; EVAPORATION; R-134A; TUBES; INSTABILITIES; WATER;
D O I
10.1016/j.ijmultiphaseflow.2008.10.004
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Flow boiling heat transfer with the refrigerants R-134a and R-245fa in copper microchannel cold plate evaporators is investigated. Arrays of microchannels of hydraulic diameter 1.09 and 0.54 mm are considered. The aspect ratio of the rectangular cross section of the channels in both test sections is 2.5. The heat transfer coefficient is measured as a function of local thermodynamic vapor quality in the range -0.2 to 0.9, at saturation temperatures ranging from 8 to 30 degrees C, mass flux from 20 to 350 kg m(-2) s(-1), and heat flux from 0 to 22 W cm(-2). The heat transfer coefficient is found to vary significantly with heat flux and vapor quality, but only slightly with saturation pressure and mass flux for the range of values investigated. It was found that nucleate boiling dominates the heat transfer. In addition to discussing measurement results, several flow boiling heat transfer correlations are also assessed for applicability to the present experiments. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:142 / 154
页数:13
相关论文
共 50 条
  • [41] Confinement effects on nucleate boiling and critical heat flux in buoyancy-driven microchannels
    Geisler, K. J. L.
    Bar-Cohen, A.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (11-12) : 2427 - 2436
  • [42] Critical heat flux prediction model for low quality flow boiling
    Pan, J., 1600, Atomic Energy Press (34):
  • [43] Parametric Effects on Pool Boiling Heat Transfer and Critical Heat Flux: A Critical Review
    Emir, Tolga
    Ourabi, Hamza
    Budakli, Mete
    Arik, Mehmet
    JOURNAL OF ELECTRONIC PACKAGING, 2022, 144 (04)
  • [44] Analysis of heat and mass transfer in MHD squeezing flow in a channel with heat flux
    Kumari, Kiran (kiran.kumariprajapati@gmail.com), 2017, Academy of Sciences of the Czech Republic, Dolejskova 5, Praha 8, 182 00, Czech Republic (63):
  • [45] Flow Boiling Heat Transfer in Wettability Patterned Microchannels
    Wang, Bin
    He, Minghao
    Wang, Hongzhao
    Qiu, Huihe
    PROCEEDINGS OF THE SIXTEENTH INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS ITHERM 2017, 2017, : 759 - 766
  • [46] Heat transfer and wall heat flux partitioning during subcooled flow nucleate boiling - A review
    Warrier, Gopinath R.
    Dhir, Vijay K.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2006, 128 (12): : 1243 - 1256
  • [47] Saturated flow boiling heat transfer and critical heat flux in small horizontal flattened tubes
    Tibirica, Cristiano Bigonha
    Ribatski, Gherhardt
    Thome, John Richard
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (25-26) : 7873 - 7883
  • [48] Heat transfer mechanisms during flow boiling in microchannels
    Kandlikar, SG
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2004, 126 (01): : 8 - 16
  • [49] Growth of elongated vapor bubbles during flow boiling heat transfer in wavy microchannels
    Odumosu, Odumuyiwa A.
    Xu, Huashi
    Wang, Tianyou
    Che, Zhizhao
    APPLIED THERMAL ENGINEERING, 2023, 223
  • [50] Correlation of the Flow Pattern and Flow Boiling Heat Transfer in Microchannels
    Kuznetsov, Vladimir V.
    Shamirzaev, Alisher S.
    Kozulin, Igor A.
    Kozlov, Stanislav P.
    HEAT TRANSFER ENGINEERING, 2013, 34 (2-3) : 235 - 245