Inverse scattering theory and trace formulae for one-dimensional Schrodinger problems with singular potentials

被引:2
|
作者
Rutkevich, S. B. [1 ]
Diehl, H. W. [1 ]
机构
[1] Univ Duisburg Essen, Fak Phys, D-47048 Duisburg, Germany
关键词
inverse scattering theory; trace formulae; singular Schrodinger operator; DIFFERENTIAL-OPERATORS; CRITICAL BEHAVIOR; SYSTEM; MODEL;
D O I
10.1088/1751-8113/48/37/375201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Inverse scattering theory is extended to one-dimensional Schrodinger problems with near-boundary singularities of the form v(z -> 0)similar or equal to-z(-2/4) + v(-1) z(-1). Trace formulae relating the boundary value v0 of the nonsingular part of the potential to spectral data are derived. Their potential is illustrated by applying them to a number of Schrodinger problems with singular potentials.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Reflection Probabilities of One-Dimensional Schrodinger Operators and Scattering Theory
    Landon, Benjamin
    Panati, Annalisa
    Panangaden, Jane
    Zwicker, Justine
    ANNALES HENRI POINCARE, 2017, 18 (06): : 2075 - 2085
  • [22] PERTURBATION-THEORY FOR THE ONE-DIMENSIONAL SCHRODINGER SCATTERING PROBLEM
    PUPYSHEV, VV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (11): : 3305 - 3318
  • [23] Uniqueness theorems in inverse spectral theory for one-dimensional Schrodinger operators
    Gesztesy, F
    Simon, B
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) : 349 - 373
  • [24] Direct and inverse spectral theory of one-dimensional Schrodinger operators with measures
    Ben Amor, A
    Remling, C
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 52 (03) : 395 - 417
  • [25] DIFFERENTIAL OPERATOR METHOD FOR ONE-DIMENSIONAL INVERSE SCATTERING PROBLEMS
    CHEN, XA
    ZHANG, WX
    APPLIED MATHEMATICS LETTERS, 1991, 4 (06) : 1 - 4
  • [26] PARITY-DEPENDENT POTENTIALS FOR THE ONE-DIMENSIONAL SCHRODINGER-EQUATION OBTAINED FROM INVERSE SPECTRAL THEORY
    ABRAHAM, PB
    DEFACIO, B
    MOSES, HE
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (02): : 303 - 316
  • [27] Regularity theory for one-dimensional variational problems with singular ellipticity
    R. Gratwick
    M. A. Sychev
    A. S. Tersenov
    Doklady Mathematics, 2016, 94 : 490 - 492
  • [28] Regularity theory for one-dimensional variational problems with singular ellipticity
    Gratwick, R.
    Sychev, M. A.
    Tersenov, A. S.
    DOKLADY MATHEMATICS, 2016, 94 (02) : 490 - 492
  • [29] One-dimensional Schrodinger operators with decaying potentials
    Remling, C
    MATHEMATICAL RESULTS IN QUANTUM MECHANICS, 1999, 108 : 343 - 349
  • [30] One-Dimensional Schrodinger Operators with Complex Potentials
    Derezinski, Jan
    Georgescu, Vladimir
    ANNALES HENRI POINCARE, 2020, 21 (06): : 1947 - 2008