Tunable plasmon-induced transparency based on bright-bright mode coupling between two parallel graphene nanostrips

被引:63
|
作者
Fu, Guang-Lai [1 ]
Zhai, Xiang [1 ]
Li, Hong-Ju [1 ]
Xia, Sheng-Xuan [1 ]
Wang, Ling-Ling [1 ]
机构
[1] Hunan Univ, Sch Phys & Elect, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Plasmon-induced transparency; Graphene; Tunability; Dipole-dipole coupling; ELECTROMAGNETICALLY INDUCED TRANSPARENCY; SILVER THIN-FILMS; DIFFERENT THICKNESSES; FANO RESONANCE; METAMATERIALS; LIGHT; NANOSTRUCTURES; PERFORMANCE; RESONATORS; SUBRADIANT;
D O I
10.1007/s11468-016-0215-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Tunable plasmon-induced transparency (PIT) is realized for the mid-infrared region only by using two parallel graphene nanostrips. The weak hybridization between the two bright modes results in the novel PIT optical response. The performance of the PIT system can be controlled by changing the geometry parameters of graphene nanostrips. At the same time, the resonance frequency of transparency window can be dynamically tuned by varying the Fermi energy of the graphene nanostrips via electrostatic gating instead of re-fabricating the nanostructures. Moreover, a figure of merit (FOM) value as high as 12 is achieved in the proposed nanostructures based on the performed sensitivity measures. Such proposed graphene-based PIT system may open up avenues for the development of compact elements such as tunable sensors, switchers, and slow-light devices.
引用
收藏
页码:1597 / 1602
页数:6
相关论文
共 50 条
  • [41] Dynamically Tunable Plasmon-Induced Transparency in Parallel Black Phosphorus Nanoribbons
    Baojing Hu
    Ming Huang
    Sumei Hong
    Jingjing Yang
    Plasmonics, 2022, 17 : 1235 - 1245
  • [42] Dynamically Tunable Plasmon-Induced Transparency in Parallel Black Phosphorus Nanoribbons
    Hu, Baojing
    Huang, Ming
    Hong, Sumei
    Yang, Jingjing
    PLASMONICS, 2022, 17 (03) : 1235 - 1245
  • [43] Dynamically tunable optical properties in graphene-based plasmon-induced transparency metamaterials
    贾微
    任佩雯
    田雨宸
    范春珍
    Chinese Physics B, 2019, 28 (02) : 363 - 368
  • [44] Tunable plasmon-induced transparency based on asymmetric H-shaped graphene metamaterials
    Tian, Yu-Chen
    Jia, Wei
    Ren, Pei-Wen
    Fan, Chun-Zhen
    CHINESE PHYSICS B, 2018, 27 (12)
  • [45] Tunable plasmon-induced transparency based on asymmetric H-shaped graphene metamaterials
    田雨宸
    贾微
    任佩雯
    范春珍
    Chinese Physics B, 2018, 27 (12) : 301 - 307
  • [46] A multi-functional tunable terahertz graphene metamaterial based on plasmon-induced transparency
    Yang, Youpeng
    Fan, Shuting
    Zhao, Jingjing
    Xu, Jinzhuo
    Zhu, Jianfang
    Wang, Xiaoran
    Qian, Zhengfang
    DIAMOND AND RELATED MATERIALS, 2024, 141
  • [47] A Tunable Terahertz Graphene Metamaterial Sensor Based on Dual Polarized Plasmon-Induced Transparency
    Chen, Tao
    Liang, Dihan
    Jiang, Weijie
    IEEE SENSORS JOURNAL, 2022, 22 (14) : 14084 - 14090
  • [48] Dynamically Tunable Plasmon-Induced Transparency Based on an H-Shaped Graphene Resonator
    Xiang, Yulin
    Zhai, Xiang
    Lin, Qi
    Xia, Shengxuan
    Qin, Meng
    Wang, Lingling
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2018, 30 (07) : 622 - 625
  • [49] Dynamically tunable optical properties in graphene-based plasmon-induced transparency metamaterials
    Jia, Wei
    Ren, Pei-Wen
    Tian, Yu-Chen
    Fan, Chun-Zhen
    CHINESE PHYSICS B, 2019, 28 (02)
  • [50] Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface
    Wang, Xianjun
    Meng, Hongyun
    Deng, Shuying
    Lao, Chaode
    Wei, Zhongchao
    Wang, Faqiang
    Tan, Chunhua
    Huang, Xuguang
    NANOMATERIALS, 2019, 9 (03):