A COMPLETE CLASSIFICATION OF THE SPACES OF COMPACT OPERATORS ON C([1, α], lp) SPACES, 1 < p < 8

被引:0
|
作者
Alspach, Dale E. [1 ]
Galego, Eloi Medina [2 ]
机构
[1] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
[2] Univ Sao Paulo, Dept Math, BR-05508090 Sao Paulo, Brazil
关键词
C([1; alpha]); spaces; l(p) spaces; spaces of compact operators on C([1; alpha; l(p)); isomorphic classifications; BANACH-SPACES; ISOMORPHIC CLASSIFICATIONS; SUBSPACES; X);
D O I
10.1090/S0002-9939-2015-12441-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We complete the classification, upto isomorphism, of the spaces of compact operators on C([ 1, gamma], lp) spaces, 1 < p < infinity. In order to do this, we classify, upto isomorphism, the spaces of compact operators K(E, F), where E = C([1, lambda], l(p)) and F = C([1, xi], l(q)) for arbitrary ordinals lambda and xi and 1 < p <= q < infinity. More precisely, we prove that it is relatively consistent with ZFC that for any infinite ordinals lambda, mu, xi and. the following statements are equivalent: (a) K(C([1, lambda], l(p)), C([1, xi], l(q))) is isomorphic to K(C([1, mu], l(p)), C([1, eta], l(q))). (b) lambda and mu have the same cardinality and C([1, xi]) is isomorphic to C([1, eta]) or there exists an uncountable regular ordinal a and 1 <= m, n < omega such that C([1, xi]) is isomorphic to C([1, alpha m]) and C([1, eta]) is isomorphic to C([1, alpha n]). Moreover, in ZFC, if lambda and mu are finite ordinals and xi and eta are infinite ordinals, then the statements (a) and (b') are equivalent. (b') C([1, xi]) is isomorphic to C([1, eta]) or there exists an uncountable regular ordinal a and 1 <= m, n <= omega such that C([1, xi]) is isomorphic to C([1, alpha m]) and C([1, eta]) is isomorphic to C([1, alpha n]).
引用
收藏
页码:2495 / 2506
页数:12
相关论文
共 50 条
  • [21] Asymptotic Greediness of the Haar System in the Spaces Lp[0,1], 1&lt;p&lt;∞
    Albiac, Fernando
    Ansorena, Jose L.
    Berna, Pablo M.
    CONSTRUCTIVE APPROXIMATION, 2020, 51 (03) : 427 - 440
  • [22] Operators on the Frechet sequence spaces ces(p+), 1 ≤ p &lt; ∞
    Albanese, Angela A.
    Bonet, Jose
    Ricker, Werner J.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1533 - 1556
  • [23] Embeddings of non-commutative Lp-spaces into non-commutative L1-spaces, 1 &lt; p &lt; 2
    Junge, M
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (02) : 389 - 406
  • [24] Fine spectra of triangular triple-band matrices on sequence spaces c and lp, (0 &lt; p &lt; 1)
    Karaisa, Ali
    Asar, Yasin
    Tollu, Durhasan Turgut
    MATHEMATICAL COMMUNICATIONS, 2016, 21 (01) : 65 - 83
  • [25] ISOMORPHIC CLASSIFICATION OF Lp,q-SPACES: THE CASE p=2, 1 ≤ q &lt; 2
    Sadovskaya, O.
    Sukochev, F.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (09) : 3975 - 3984
  • [26] The classical subspaces of the projective tensor products of lp and C(α) spaces, α &lt; ω1
    Galego, Eloi Medina
    Samuel, Christian
    STUDIA MATHEMATICA, 2013, 214 (03) : 237 - 250
  • [27] Lipschitz free p-spaces for 0 &lt; p &lt; 1
    Albiac, Fernando
    Ansorena, Jose L.
    Cuth, Marek
    Doucha, Michal
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 240 (01) : 65 - 98
  • [28] COEFFICIENT ESTIMATES FOR Hp SPACES WITH 0 &lt; p &lt; 1
    Brevig, Ole Fredrik
    Saksman, Eero
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (09) : 3911 - 3924
  • [29] Toeplitz operators on Bergman spaces with exponential weights for 0 &lt; p ≤ 1
    Lv, Xiaofen
    Arroussi, H.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 173
  • [30] Asymptotically isometric copies of lp (1≤p&lt;∞) and c0 in banach spaces
    Chen, DY
    ACTA MATHEMATICA SCIENTIA, 2006, 26 (02) : 281 - 290