Speeding up the Hybrid-Monte-Carlo algorithm for dynamical fermions

被引:9
|
作者
Hasenbusch, M [1 ]
Jansen, K [1 ]
机构
[1] DESY, NIC, D-15735 Zeuthen, Germany
关键词
D O I
10.1016/S0920-5632(01)01933-8
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We propose a modification of the Hybrid-Monte-Carlo algorithm that allows for a larger step-size of the integration scheme at constant acceptance rate. The key ingredient is the splitting of the pseudo-fermion action into two parts. We test our proposal at the example of the two-dimensional lattice Schwinger model and four-dimensional lattice QCD with two degenerate flavours of Wilson-fermions.
引用
收藏
页码:1076 / 1078
页数:3
相关论文
共 50 条
  • [21] Comparison of Computational Speed between Landau-Lif-shitz-Gilbert and Hybrid-Monte-Carlo Micromagnetics
    Song, J.
    Zhao, Z.
    Wei, D.
    2018 IEEE INTERNATIONAL MAGNETIC CONFERENCE (INTERMAG), 2018,
  • [22] "Parallel-Tempering"-Assisted Hybrid Monte Carlo Algorithm for Bayesian Inference in Dynamical Systems
    Sun, Shengjie
    Shen, Yuan
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS (UKCI 2019), 2020, 1043 : 357 - 368
  • [23] Posterior-based proposals for speeding up Markov chain Monte Carlo
    Pooley, C. M.
    Bishop, S. C.
    Doeschl-Wilson, A.
    Marion, G.
    ROYAL SOCIETY OPEN SCIENCE, 2019, 6 (11):
  • [24] Tunneling hybrid Monte-Carlo algorithm
    Golterman, Maarten
    Shamir, Yigal
    PHYSICAL REVIEW D, 2007, 76 (09):
  • [25] Optimal tuning of the hybrid Monte Carlo algorithm
    Beskos, Alexandros
    Pillai, Natesh
    Roberts, Gareth
    Sanz-Serna, Jesus-Maria
    Stuart, Andrew
    BERNOULLI, 2013, 19 (5A) : 1501 - 1534
  • [26] Method for speeding up convergence of Monte-Carlo simulation in reliability calculation
    Ding, Ming
    Li, Shenghu
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2000, 24 (12): : 16 - 19
  • [27] Tuning the generalized hybrid Monte Carlo algorithm
    Kennedy, AD
    Edwards, R
    Mino, H
    Pendleton, B
    NUCLEAR PHYSICS B, 1996, : 781 - 784
  • [28] Reversibility violation in the Hybrid Monte Carlo algorithm
    Urbach, Carsten
    COMPUTER PHYSICS COMMUNICATIONS, 2018, 224 : 44 - 51
  • [29] TUNING THE HYBRID MONTE-CARLO ALGORITHM
    GUPTA, R
    KILCUP, GW
    SHARPE, SR
    PHYSICAL REVIEW D, 1988, 38 (04): : 1278 - 1287
  • [30] Choice of integrator in the hybrid Monte Carlo algorithm
    Takaishi, T
    COMPUTER PHYSICS COMMUNICATIONS, 2000, 133 (01) : 6 - 17