AN EXTENSION OF CHEBYSHEV'S ALGEBRAIC INEQUALITY

被引:0
|
作者
Niculescu, Constantin P. [1 ]
Roventa, Ionel [1 ]
机构
[1] Univ Craiova, Dept Math, Craiova 200585, Romania
来源
MATHEMATICAL REPORTS | 2013年 / 15卷 / 01期
关键词
Chebyshev's algebraic inequality; average; absolutely continuous function; covariance;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend Chebyshev's algebraic inequality to the framework of non-monotonic functions.
引用
收藏
页码:91 / 95
页数:5
相关论文
共 50 条
  • [41] A NEW EXTENSION OF CARLSON'S INEQUALITY
    Luo, Min-Jie
    Raina, Ravinder Krishna
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (02): : 417 - 424
  • [42] On an Extension of Shapiro's Cyclic Inequality
    Nguyen Minh Tuan
    Le Quy Thuong
    Journal of Inequalities and Applications, 2009
  • [43] On an Extension of Hibert's Inequality and Applications
    YANG Bi-cheng (Department of Mathematics
    Chinese Quarterly Journal of Mathematics, 2006, (01) : 96 - 102
  • [44] ???????An extension for matrices of Young's inequality
    Rani, Anju
    Kapil, Yogesh
    Singh, Mandeep
    ADVANCES IN OPERATOR THEORY, 2023, 8 (03)
  • [45] AN OPERATOR EXTENSION OF BOHR'S INEQUALITY
    Moslehian, M. S.
    Pecaric, J. E.
    Peric, I.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2009, 35 (02) : 77 - 84
  • [46] Clifford's Inequality for real algebraic curves
    Huisman, J
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2003, 14 (02): : 197 - 205
  • [47] BUZANO'S INEQUALITY IN ALGEBRAIC PROBABILITY SPACES
    Agredo, J.
    Leon, Y.
    Osorio, J.
    Pena, A.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (02): : 585 - 599
  • [48] An Extension of the Chebyshev Polynomials
    Tatarczak, Anna
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2016, 10 (07) : 1519 - 1533
  • [49] An extension of the Chebyshev polynomials
    Kiepiela, K
    Klimek, D
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 178 (1-2) : 305 - 312
  • [50] An Extension of the Chebyshev Polynomials
    Anna Tatarczak
    Complex Analysis and Operator Theory, 2016, 10 : 1519 - 1533