Efficient Near-Optimal Variable-Size Microaggregation

被引:5
|
作者
Soria-Comas, Jordi [1 ]
Domingo-Ferrer, Josep [1 ]
Mulero, Rafael [1 ]
机构
[1] Univ Rovira Virgili, Dept Comp Sci & Math, CYBERCAT Ctr Cybersecur Res Catalonia, UNESCO Chair Data Privacy, Ave Paisos Catalans 26, Tarragona 43007, Spain
基金
欧盟地平线“2020”;
关键词
Anonymization; Statistical disclosure control; Microaggregation; Lloyd's algorithm; ALGORITHM;
D O I
10.1007/978-3-030-26773-5_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Microaggregation is a well-known family of statistical disclosure control methods, that can also be used to achieve the k-anonymity privacy model and some of its extensions. Microaggregation can be viewed as a clustering problem where clusters must include at least k elements. In this paper, we present a new microaggregation heuristic based on Lloyd's clustering algorithm that causes much less information loss than the other microaggregation heuristics in the literature. Our empirical work consistently observes this superior performance for all minimum cluster sizes k and data sets tried.
引用
收藏
页码:333 / 345
页数:13
相关论文
共 50 条
  • [41] Efficient Near-Optimal t-Closeness With Low Information Loss
    Gowda, Vikas Thammanna
    Bagai, Rajiv
    Spilinek, Gerald
    Vitalapura, Spandana
    PROCEEDINGS OF THE THE 11TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS (IDAACS'2021), VOL 1, 2021, : 494 - 498
  • [42] Near-Optimal Online Auctions
    Blum, Avrim
    Hartline, Jason D.
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 1156 - 1163
  • [43] Efficient Algorithms for Generating Provably Near-Optimal Cluster Descriptors for Explainability
    Sambaturu, Prathyush
    Gupta, Aparna
    Davidson, Ian
    Ravi, S. S.
    Vullikanti, Anil
    Warren, Andrew
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 1636 - 1643
  • [44] AN EFFICIENT METHOD FOR NEAR-OPTIMAL POLYGONAL APPROXIMATION BASED ON DIFFERENTIAL EVOLUTION
    Sarkar, Biswajit
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2008, 22 (06) : 1267 - 1281
  • [45] An efficient near-optimal approach to incoherent scatter radar parameter estimation
    Nikoukar, Romina
    Kamalabadi, Farzad
    Kudeki, Erhan
    Sulzer, Michael
    RADIO SCIENCE, 2008, 43 (05)
  • [46] Near-optimal terrain collision
    Malaek, S. M.
    Abbasi, A.
    2006 IEEE AEROSPACE CONFERENCE, VOLS 1-9, 2006, : 2990 - +
  • [47] Near-optimal adaptive polygonization
    Seibold, W
    Joy, KI
    COMPUTER GRAPHICS INTERNATIONAL, PROCEEDINGS, 1999, : 206 - 213
  • [48] Near-Optimal Light Spanners
    Chechik, Shiri
    Wulff-Nilsen, Christian
    ACM TRANSACTIONS ON ALGORITHMS, 2018, 14 (03)
  • [49] An Efficient Heuristics to Realize Near-Optimal Small-World Networks
    Chakraborty, Abhishek
    Manoj, B. S.
    2015 TWENTY FIRST NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2015,
  • [50] Near-optimal block alignments
    Tseng, Kuo-Tsung
    Yang, Chang-Biau
    Huang, Kuo-Si
    Peng, Yung-Hsing
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2008, E91D (03): : 789 - 795