Hi-C 2.1 Observations of Reconnection Nanojets

被引:4
|
作者
Patel, Ritesh [1 ,2 ]
Pant, Vaibhav [2 ]
机构
[1] Indian Inst Astrophys, 2nd Block, Bangalore 560034, Karnataka, India
[2] Aryabhatta Res Inst Observat Sci, Naini Tal 263001, India
来源
ASTROPHYSICAL JOURNAL | 2022年 / 938卷 / 02期
基金
美国国家航空航天局;
关键词
RESOLUTION CORONAL IMAGER; SOLAR; REGION; PARAMETERS; NANOFLARES; STRANDS; FLARES;
D O I
10.3847/1538-4357/ac92e5
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
One of the possible mechanisms for heating the solar atmosphere is the magnetic reconnection occurring at different spatiotemporal scales. The discovery of fast bursty nanojets due to reconnection in the coronal loops has been linked to nanoflares and is considered as a possible mechanism for coronal heating. The occurrence of these jets mostly in the direction inwards to the loop was observed in the past. In this study, we report 10 reconnection nanojets, four with directions inward and six moving outward to the loop, in observations from the High-resolution Coronal Imager 2.1 and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. We determined the maximum length, spire width, speed, and lifetimes of these jets and studied their correlations. We found that outward jets with higher speeds are longer in length and duration while the inward jets show opposite behavior. The average duration of the outward jets is approximate to 42 s and that of inward jets is approximate to 24 s. We identified jets with subsonic speeds below 100 km s(-1) to high speeds over 150 km s(-1). These jets can be identified in multiple passbands of AIA extending from the upper transition region to the corona suggesting their multithermal nature.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Puzzle Hi-C: An accurate scaffolding software
    Lin, Guoliang
    Huang, Zhiru
    Yue, Tingsong
    Chai, Jing
    Li, Yan
    Yang, Huimin
    Qin, Wanting
    Yang, Guobing
    Murphy, Robert W.
    Zhang, Ya-ping
    Zhang, Zijie
    Zhou, Wei
    Luo, Jing
    PLOS ONE, 2024, 19 (07):
  • [22] Significance in scale space for Hi-C data
    Liu, Rui
    Zhang, Zhengwu
    Won, Hyejung
    Marron, J. S.
    BIOINFORMATICS, 2025, 41 (03)
  • [23] HUGIn: Hi-C Unifying Genomic Interrogator
    Martin, Joshua S.
    Xu, Zheng
    Reiner, Alex P.
    Mohlke, Karen L.
    Sullivan, Patrick
    Ren, Bing
    Hu, Ming
    Li, Yun
    BIOINFORMATICS, 2017, 33 (23) : 3793 - 3795
  • [24] Measuring the reproducibility and quality of Hi-C data
    Yardimci, Galip Gurkan
    Ozadam, Hakan
    Sauria, Michael E. G.
    Ursu, Oana
    Yan, Koon-Kiu
    Yang, Tao
    Chakraborty, Abhijit
    Kaul, Arya
    Lajoie, Bryan R.
    Song, Fan
    Zhan, Ye
    Ay, Ferhat
    Gerstein, Mark
    Kundaje, Anshul
    Li, Qunhua
    Taylor, James
    Yue, Feng
    Dekker, Job
    Noble, William S.
    GENOME BIOLOGY, 2019, 20 (1)
  • [25] DESIGN PARAMETERS OF THE HI-C DRAM CELL
    ELMANSY, YA
    BURGHARD, RA
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1982, 17 (05) : 951 - 956
  • [26] LiMCA: Hi-C gets an RNA twist
    Kawaoka, Jane
    Lomvardas, Stavros
    NATURE METHODS, 2024, 21 (06) : 934 - 935
  • [27] Software tools for visualizing Hi-C data
    Yardimci, Galip Gurkan
    Noble, William Stafford
    GENOME BIOLOGY, 2017, 18
  • [28] Comparison of Capture Hi-C Analytical Pipelines
    Aljogol, Dina
    Thompson, I. Richard
    Osborne, Cameron S.
    Mifsud, Borbala
    FRONTIERS IN GENETICS, 2022, 13
  • [29] When ChIA PETs meet Hi-C
    Nicole Rusk
    Nature Methods, 2009, 6 : 863 - 863
  • [30] Computational tools for Hi-C data analysis
    Zhijun Han
    Gang Wei
    Quantitative Biology, 2017, 5 (03) : 215 - 225