Unbounded trajectories of dynamical systems

被引:1
|
作者
Gascon, FG
Pelayo, A
Peralta-Salas, D [1 ]
机构
[1] Univ Complutense, Fac Ciencias Fis, Dept Fis Teor 2, E-28040 Madrid, Spain
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
divergence-free vector fields; unbounded orbits; topological techniques; foliations;
D O I
10.1016/S0893-9659(04)90060-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that when a divergence-free vector field without zeros X is defined on a two-dimensional, noncompact manifold, which is not a cylinder, then X must possess an unbounded orbit. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:253 / 259
页数:7
相关论文
共 50 条
  • [11] TOPOLOGY AND HOMOCLINIC TRAJECTORIES OF DISCRETE DYNAMICAL SYSTEMS
    Pejsachowicz, Jacobo
    Skiba, Robert
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2013, 6 (04): : 1077 - 1094
  • [12] Centroidal trajectories and frames for chaotic dynamical systems
    Yamrom, B
    Kunin, IA
    Chernykh, GA
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2003, 41 (3-5) : 465 - 473
  • [13] Optimization and stabilization of trajectories for constrained dynamical systems
    Posa, Michael
    Kuindersma, Scott
    Tedrake, Russ
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2016, : 1366 - 1373
  • [14] The reconstruction of unbounded controls in non-linear dynamical systems
    Maksimov, VI
    Pandolfi, L
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2001, 65 (03): : 371 - 376
  • [15] PHASE-LOCKED TRAJECTORIES FOR DYNAMICAL SYSTEMS ON GRAPHS
    Epperlein, Jeremias
    Siegmund, Stefan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (07): : 1827 - 1844
  • [16] APPROXIMATE AND REAL TRAJECTORIES FOR GENERIC DYNAMICAL-SYSTEMS
    CORLESS, RM
    PILYUGIN, SY
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 189 (02) : 409 - 423
  • [17] A Turnpike Property of Trajectories of Dynamical Systems with a Lyapunov Function
    Zaslavski, Alexander J.
    GAMES, 2020, 11 (04): : 1 - 8
  • [18] On the existence and uniqueness of solution trajectories to hybrid dynamical systems
    Heemels, WPMH
    Çamlibel, MK
    van der Schaft, AJ
    Schumacher, JM
    NONLINEAR AND HYBRID SYSTEM IN AUTOMOTIVE CONTROL, 2003, : 391 - 421
  • [19] Multicanonical sampling of rare trajectories in chaotic dynamical systems
    Kitajima, Akimasa
    Iba, Yukito
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (01) : 251 - 253
  • [20] Trajectories of intervals in one-dimensional dynamical systems
    Fedorenko, V. V.
    Romanenko, E. Yu.
    Sharkovsky, A. N.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2007, 13 (8-9) : 821 - 828