Preconditioned GMRES method for a class of Toeplitz linear systems in fractional eigenvalue problems

被引:2
|
作者
Zuo, Qian [1 ,2 ]
He, Ying [1 ,2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Hubei Key Lab Computat Sci, Wuhan 430072, Peoples R China
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2020年 / 39卷 / 04期
基金
中国国家自然科学基金;
关键词
Fractional eigenvalue problems; Toeplitz linear systems; GMRES; Precondition; Strang circulant matrix; DIFFUSION EQUATION; SCHEME;
D O I
10.1007/s40314-020-01258-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the solution of a class of Toeplitz linear systems coming from the fractional eigenvalue problems. We construct the Strang circulant matrix as a preconditioner to solve the Toeplitz linear systems, and analyze the properties of eigenvalues of the preconditioned coefficient matrix. We also propose the preconditioned generalized minimal residuals method for solving this linear systems, and give the computational costs of this algorithm. The numerical examples show the effecticiency of our method.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] On preconditioned MQHSS iterative method for solving a class of complex symmetric linear systems
    Beibei Li
    Jingjing Cui
    Zhengge Huang
    Xiaofeng Xie
    Computational and Applied Mathematics, 2022, 41
  • [32] On preconditioned MQHSS iterative method for solving a class of complex symmetric linear systems
    Li, Beibei
    Cui, Jingjing
    Huang, Zhengge
    Xie, Xiaofeng
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (06):
  • [33] A preconditioned version of the MBP iteration method for a class of complex symmetric linear systems
    Xiaofeng Xie
    Zhengge Huang
    Jingjing Cui
    Beibei Li
    Computational and Applied Mathematics, 2024, 43
  • [34] A preconditioned modulus-based matrix multisplitting block iteration method for the linear complementarity problems with Toeplitz matrix
    Wu, Min-Hua
    Li, Chen-Liang
    CALCOLO, 2019, 56 (02)
  • [35] A preconditioned modulus-based matrix multisplitting block iteration method for the linear complementarity problems with Toeplitz matrix
    Min-Hua Wu
    Chen-Liang Li
    Calcolo, 2019, 56
  • [36] SOLUTION OF LINEAR SYSTEMS AS EIGENVALUE PROBLEMS
    KRISHNAMURTHY, EV
    PROCEEDINGS OF THE IEEE, 1964, 52 (09) : 1065 - &
  • [37] Orthogonal block Kaczmarz inner-iteration preconditioned flexible GMRES method for large-scale linear systems
    Zhang, Xin-Fang
    Xiao, Meng-Long
    He, Zhuo-Heng
    APPLIED MATHEMATICS LETTERS, 2025, 166
  • [38] A PROJECTED PRECONDITIONED CONJUGATE GRADIENT METHOD FOR THE LINEAR RESPONSE EIGENVALUE PROBLEM
    Li, Xing
    Shen, Chungen
    Zhang, Lei-Hong
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2018, 8 (04): : 389 - 412
  • [39] Preconditioned inexact Jacobi–Davidson method for large symmetric eigenvalue problems
    Hong-Yi Miao
    Li Wang
    Computational and Applied Mathematics, 2020, 39
  • [40] Two New Variants of the Simpler Block GMRES Method with Vector Deflation and Eigenvalue Deflation for Multiple Linear Systems
    Tajaddini, Azita
    Wu, Gang
    Saberi-Movahed, Farid
    Azizizadeh, Najmeh
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 86 (01)