Fully Integrated Artificial Pancreas in Type 1 Diabetes: Modular Closed-Loop Glucose Control Maintains Near Normoglycemia

被引:197
|
作者
Breton, Marc [1 ]
Farret, Anne [2 ,3 ]
Bruttomesso, Daniela [4 ]
Anderson, Stacey [1 ]
Magni, Lalo [5 ]
Patek, Stephen [1 ]
Man, Chiara Dalla [6 ]
Place, Jerome [2 ,3 ]
Demartini, Susan [1 ]
Del Favero, Simone [6 ]
Toffanin, Chiara [5 ]
Hughes-Karvetski, Colleen [1 ]
Dassau, Eyal [7 ,8 ]
Zisser, Howard [7 ,8 ]
Doyle, Francis J., III [7 ]
De Nicolao, Giuseppe [5 ]
Avogaro, Angelo [4 ]
Cobelli, Claudio [6 ]
Renard, Eric [2 ,3 ]
Kovatchev, Boris [1 ]
机构
[1] Univ Virginia, Ctr Diabet Technol, Charlottesville, VA 22903 USA
[2] Univ Montpellier, Univ Hosp Montpellier, Dept Endocrinol Diabet & Nutr, INSERM,Clin Invest Ctr 1001, F-34059 Montpellier, France
[3] Univ Montpellier, Inst Funct Genom, CNRS, INSERM,U661,UMR5203, F-34059 Montpellier, France
[4] Univ Padua, Dept Internal Med, Unit Metab Dis, I-35100 Padua, Italy
[5] Univ Pavia, Dept Comp Engn & Syst Sci, I-27100 Pavia, Italy
[6] Univ Padua, Dept Informat Engn, Padua, Italy
[7] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA
[8] Sansum Diabet Res Inst, Santa Barbara, CA USA
关键词
INSULIN DELIVERY; INFUSION; ADULTS; SYSTEM; MODEL;
D O I
10.2337/db11-1445
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Integrated closed-loop control (CLC), combining continuous glucose monitoring (CGM) with insulin pump (continuous subcutaneous insulin infusion [CSII]), known as artificial pancreas, can help optimize glycemic control in diabetes. We present a fundamental modular concept for CLC design, illustrated by clinical studies involving 11 adolescents and 27 adults at the Universities of Virginia, Padova, and Montpellier. We tested two modular CLC constructs: standard control to range (sCTR), designed to augment pump plus CGM by preventing extreme glucose excursions; and enhanced control to range (eCTR), designed to truly optimize control within near normoglycemia of 3.9-10 trillion. The CLC system was fully integrated using automated data transfer CGM -> algorithm -> CSII All studies used randomized crossover design comparing CSII versus CLC during identical 22-h hospitalizations including meals, overnight rest, and 30-min exercise. sCTR increased significantly the time in near normoglycemia from 61 to 74%, simultaneously reducing hypoglycemia 2.7-fold. eCTR improved mean blood glucose from 7.73 to 6.68 nunol/L without increasing hypoglycemia, achieved 97% in near normoglycemia and 77% in tight glycemic control, and reduced variability overnight. In conclusion, sCTR and eCTR represent sequential steps toward automated CLC, preventing extremes (sCTR) and further optimizing control (eCTR). This approach inspires compelling new concepts: modular assembly, sequential deployment, testing, and clinical acceptance of custom-built CLC systems tailored to individual patient needs. Diabetes 61:2230-2237, 2012
引用
收藏
页码:2230 / 2237
页数:8
相关论文
共 50 条
  • [21] Model-Based Closed-Loop Glucose Control in Type 1 Diabetes
    Schmidt, Signe
    Boiroux, Dimitri
    Duun-Henriksen, Anne Katrine
    Jorgensen, John Bagterp
    Poulsen, Niels Kjolstad
    Madsen, Henrik
    Skyggebjerg, Ole
    Madsbad, Sten
    Norgaard, Kirsten
    DIABETES, 2013, 62 : A247 - A247
  • [22] Why Subjects With Type 1 Diabetes Volunteer for Closed-Loop Artificial Pancreas (AP) Studies
    Bevier, Wendy C.
    Fuller, Serena M.
    Fuller, Ryan P.
    Rubin, Richard R.
    Dassau, Eyal
    Doyle, Francis J., III
    Seborg, Dale E.
    Castorino, Kristin N.
    Jovanovic, Lois
    Zisser, Howard C.
    DIABETES, 2013, 62 : A657 - A657
  • [23] Artificial pancreas for type 1 diabetes: Closed-loop algorithm based on Error Dynamics Shaping
    Cormerais, H.
    Richard, P. -Y.
    JOURNAL OF PROCESS CONTROL, 2012, 22 (07) : 1219 - 1227
  • [24] MODULAR ARCHITECTURE OF CLOSED-LOOP CONTROL - THE BLUEPRINT FOR SEQUENTIAL PRODUCT DEVELOPMENT OF THE ARTIFICIAL PANCREAS
    Kovatchev, B. P.
    DIABETES TECHNOLOGY & THERAPEUTICS, 2014, 16 : A22 - A23
  • [25] Day and Night Closed-Loop Control Using the Integrated Medtronic Hybrid Closed-Loop System in Type 1 Diabetes at Diabetes Camp
    Ly, Trang T.
    Roy, Anirban
    Grosman, Benyamin
    Shin, John
    Campbell, Alex
    Monirabbasi, Salman
    Liang, Bradley
    von Eyben, Rie
    Shanmugham, Satya
    Clinton, Paula
    Buckingham, Bruce A.
    DIABETES CARE, 2015, 38 (07) : 1205 - 1211
  • [26] The Impact of Glucose Sensing Dynamics on the Closed-Loop Artificial Pancreas
    Huyett, Lauren M.
    Dassau, Eyal
    Zisser, Howard C.
    Doyle, Francis J., II
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 5116 - 5121
  • [27] Individualized Model Predictive Control for the Artificial Pancreas IN SILICO EVALUATION OF CLOSED-LOOP GLUCOSE CONTROL
    Messori, Mirko
    Incremona, Gian Paolo
    Cobelli, Claudio
    Magni, Lalo
    IEEE CONTROL SYSTEMS MAGAZINE, 2018, 38 (01): : 86 - 104
  • [28] Automated Overnight Closed-Loop Glucose Control in Young Children with Type 1 Diabetes
    Elleri, Daniela
    Allen, Janet M.
    Nodale, Marianna
    Wilinska, Malgorzata E.
    Mangat, Jasdip S.
    Larsen, Anne Mette F.
    Acerini, Carlo L.
    Dunger, David B.
    Hovorka, Roman
    DIABETES TECHNOLOGY & THERAPEUTICS, 2011, 13 (04) : 419 - 424
  • [29] Bi-Hormonal Closed-Loop Blood Glucose Control for Type 1 Diabetes
    Russell, Steven J.
    El-Khatib, Firas H.
    Nathan, David M.
    Sutherlin, Robert G.
    Damiano, Edward R.
    DIABETES, 2010, 59 : A94 - A94
  • [30] Glucose control during exercise using a closed-loop artificial pancreas: preliminary results
    Weinzimer, Stuart A.
    Sherr, Jennifer L.
    Cengiz, Eda
    Carria, Lori
    Clark, Bud
    Kurtz, Natalie
    Loutseiko, Mikhail
    Roy, Anirban
    Tamborlane, William V.
    Burke, Erin
    Yarmis, Ben
    Palerm, Cesar C.
    HORMONE RESEARCH, 2009, 72 : 481 - 481