A fixed point approach to the stability of additive-quadratic-quartic functional equations

被引:6
|
作者
Bodaghi, Abasalt [1 ]
Rassias, Themistocles Michael [2 ]
Zivari-Kazempour, Abbas [3 ]
机构
[1] Islamic Azad Univ, Dept Math, Garmsar Branch, Garmsar, Iran
[2] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[3] Ayatollah Borujerdi Univ, Dept Math, Borujerd, Iran
关键词
additive-quadratic-quartic functional equation; Hyers-Ulam stability; non-Archimedean normed space;
D O I
10.22075/ijnaa.2019.17071.1905
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we introduce a class of the generalized mixed additive, quadratic and quartic functional equations and obtain their common solutions. We also investigate the stability of such modified functional equations in the non-Archimedean normed spaces by a fixed point method.
引用
收藏
页码:17 / 28
页数:12
相关论文
共 50 条
  • [31] Stability Results of Additive-Quadratic n-Dimensional Functional Equation: Fixed Point Approach
    Karthikeyan, S.
    Rassias, John M.
    Vijayakumar, S.
    Sakthivel, K.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2022, 13 (02): : 461 - 476
  • [32] FUZZY STABILITY OF AN ADDITIVE-QUADRATIC FUNCTIONAL EQUATION WITH THE FIXED POINT ALTERNATIVE
    Seo, Jeong Pil
    Lee, Sungjin
    Saadati, Reza
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2015, 22 (03): : 285 - 298
  • [33] FUZZY STABILITY OF A CUBIC-QUARTIC FUNCTIONAL EQUATION: A FIXED POINT APPROACH
    Jang, Sun-Young
    Park, Choonkil
    Shin, Dong Yun
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (03) : 491 - 503
  • [34] A Fixed Point Approach to the Stability of Quadratic Equations in Quasi Normed Spaces
    Mirmostafaee, Alireza Kamel
    KYUNGPOOK MATHEMATICAL JOURNAL, 2009, 49 (04): : 691 - 700
  • [35] Brzdek fixed point approach for generalized quadratic radical functional equations
    Kang, Dongseung
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (01)
  • [36] A generalized mixed type of quartic–cubic–quadratic–additive functional equations
    T. Z. Xu
    J. M. Rassias
    W. X. Xu
    Ukrainian Mathematical Journal, 2011, 63 : 461 - 479
  • [37] ON THE STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS IN PARTIALLY ORDERED BANACH SPACES : A PARTIALLY ORDERED FIXED POINT APPROACH
    Ramezani, Maryam
    Baghani, Hamid
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 9 (04): : 259 - 270
  • [38] A FIXED POINT APPROACH TO THE STABILITY OF A QUADRATIC-CUBIC FUNCTIONAL EQUATION
    Lee, Yang-Hi
    KOREAN JOURNAL OF MATHEMATICS, 2019, 27 (02): : 343 - 355
  • [39] A Fixed Point Approach to the Stability of Pexider Quadratic Functional Equation with Involution
    MM Pourpasha
    JM Rassias
    R Saadati
    SM Vaezpour
    Journal of Inequalities and Applications, 2010
  • [40] A Fixed Point Approach to the Stability of Pexider Quadratic Functional Equation with Involution
    Pourpasha, M. M.
    Rassias, J. M.
    Saadati, R.
    Vaezpour, S. M.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,