Monolayer MoS2 Nanoribbon Transistors Fabricated by Scanning Probe Lithography

被引:73
|
作者
Chen, Sihan [1 ]
Kim, SunPhil [1 ]
Chen, Weibing [2 ]
Yuan, Jiangtan [2 ]
Bashir, Rashid [1 ]
Lou, Jun [2 ]
van der Zande, Arend M. [1 ]
King, William P. [1 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[2] Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA
关键词
MoS2; transistor; monolayer; narrow channel; scanning probe lithography; GRAPHENE NANORIBBONS; METAL CONTACTS; TRANSITION; PERFORMANCE; ELECTRONICS; HYSTERESIS; MODULATION; DEPOSITION; REDUCTION;
D O I
10.1021/acs.nanolett.9b00271
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Monolayer MoS2 is a promising material for nanoelectronics; however, the lack of nanofabrication tools and processes has made it very challenging to realize nanometer-scale electronic devices from monolayer MoS2. Here, we demonstrate the fabrication of monolayer MoS2 nanoribbon field-effect transistors as narrow as 30 nm using scanning probe lithography (SPL). The SPL process uses a heated nanometer-scale tip to deposit narrow nanoribbon polymer structures onto monolayer MoS2. The polymer serves as an etch mask during a XeF2 vapor etch, which defines the channel of a field-effect transistor (FET). We fabricated seven devices with a channel width ranging from 30 to 370 nm, and the fabrication process was carefully studied by electronic measurements made at each process step. The nanoribbon devices have a current on/off ratio > 10(4) and an extrinsic field-effect mobility up to 8.53 cm(2)/(V s). By comparing a 30 nm wide device with a 60 nm wide device that was fabricated on the same MoS2 flake, we found the narrower device had a smaller mobility, a lower on/off ratio, and a larger subthreshold swing. To our knowledge, this is the first published work that describes a working transistor device from monolayer MoS2 with a channel width smaller than 100 nm.
引用
收藏
页码:2092 / 2098
页数:7
相关论文
共 50 条
  • [21] Synthesized multiwall MoS2 nanotube and nanoribbon field-effect transistors
    Fathipour, S.
    Remskar, M.
    Varlec, A.
    Ajoy, A.
    Yan, R.
    Vishwanath, S.
    Rouvimov, S.
    Hwang, W. S.
    Xing, H. G.
    Jena, D.
    Seabaugh, A.
    APPLIED PHYSICS LETTERS, 2015, 106 (02)
  • [22] Monolayer MoS2 as a sensitive probe: Exploring the resistive switching mechanism of MoS2/NSTO heterostructures
    Qiao, Yadong
    Wang, Fadi
    Guo, Wei
    He, Zhiquan
    Yao, Li
    Li, Jialu
    Sun, Nana
    Wang, Yuhang
    Wang, Fengping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 967
  • [23] Performance limit of all-wrapped monolayer MoS2 transistors
    Zhang, Wenbo
    Liang, Binxi
    Tang, Jiachen
    Chen, Jian
    Wan, Qing
    Shi, Yi
    Li, Songlin
    SCIENCE BULLETIN, 2023, 68 (18) : 2025 - 2032
  • [24] Optoelectronic synapse using monolayer MoS2 field effect transistors
    Molla Manjurul Islam
    Durjoy Dev
    Adithi Krishnaprasad
    Laurene Tetard
    Tania Roy
    Scientific Reports, 10
  • [25] Optoelectronic synapse using monolayer MoS2 field effect transistors
    Islam, Molla Manjurul
    Dev, Durjoy
    Krishnaprasad, Adithi
    Tetard, Laurene
    Roy, Tania
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [26] Atomistic full-band simulations of monolayer MoS2 transistors
    Chang, Jiwon
    Register, Leonard F.
    Banerjee, Sanjay K.
    APPLIED PHYSICS LETTERS, 2013, 103 (22)
  • [27] Effect of Substrate Coupling on the Performance and Variability of Monolayer MoS2 Transistors
    Alharbi, Abdullah
    Huang, Zhujun
    Taniguchi, Takashi
    Watanabe, Kenji
    Shahrjerdi, Davood
    IEEE ELECTRON DEVICE LETTERS, 2019, 40 (01) : 135 - 138
  • [28] Graphene-Contacted Ultrashort Channel Monolayer MoS2 Transistors
    Xie, Li
    Liao, Mengzhou
    Wang, Shuopei
    Yu, Hua
    Du, Luojun
    Tang, Jian
    Zhao, Jing
    Zhang, Jing
    Chen, Peng
    Lu, Xiaobo
    Wang, Guole
    Xie, Guibai
    Yang, Rong
    Shi, Dongxia
    Zhang, Guangyu
    ADVANCED MATERIALS, 2017, 29 (37)
  • [29] On Monolayer MoS2 Field-Effect Transistors at the Scaling Limit
    Liu, Leitao
    Lu, Yang
    Guo, Jing
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2013, 60 (12) : 4133 - 4139
  • [30] Defect MoS Misidentified as MoS2 in Monolayer MoS2 by Scanning Transmission Electron Microscopy: A First-Principles Prediction
    Yu, Song
    Cai, Zenghua
    Sun, Deyan
    Wu, Yu-Ning
    Chen, Shiyou
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, : 1840 - 1847