Co-pyrolysis of low rank coals and biomass: Product distributions

被引:92
|
作者
Soncini, Ryan M. [1 ,2 ]
Means, Nicholas C. [1 ,2 ]
Weiland, Nathan T. [1 ,3 ]
机构
[1] Natl Energy Technol Lab, Pittsburgh, PA USA
[2] URS Corp, Pittsburgh, PA USA
[3] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA
关键词
Coal; Biomass; Co-pyrolysis; Low rank coal; GASIFICATION; DEVOLATILIZATION; HYDROPYROLYSIS; COMBUSTION; SYNERGIES; CHAR;
D O I
10.1016/j.fuel.2013.04.073
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Pyrolysis and gasification of combined low rank coal and biomass feeds are the subject of much study in an effort to mitigate the production of green house gases from integrated gasification combined cycle (IGCC) systems. While co-feeding has the potential to reduce the net carbon footprint of commercial gasification operations, success of this strategy requires investigation of the effects of coal/biomass co-feeding on reaction kinetics and product distributions. Southern yellow pine was pyrolyzed in a semi-batch type drop tube reactor with either Powder River Basin sub-bituminous coal or Mississippi lignite at several temperatures and feed ratios. Product gas composition of expected primary constituents (CO, CO2, CH4, H-2, H2O, and C2H4) was determined by in situ mass spectrometry while minor gaseous constituents were determined using a GC-MS. Product distributions are fit to linear functions of temperature, and quadratic functions of biomass fraction, for use in computational co-pyrolysis simulations. The results are shown to yield significant nonlinearities, particularly at higher temperatures and for lower ranked coals. The co-pyrolysis product distributions evolve more tar, and less char, CH4, and C2H4, than an additive pyrolysis process would suggest. For lignite co-pyrolysis, CO and H-2 production are also reduced. The data suggests that rapid pyrolysis of biomass produces hydrogen that stabilizes large radical structures generated during the early stages of coal pyrolysis. Stabilization causes these structures to be released as tar, rather than crosslinking with one another to produce secondary char and light gases. Finally, it is shown that, for the two coal types tested, co-pyrolysis synergies are more significant as coal rank decreases, likely because the initial structure in these coals contains larger pores and smaller clusters of aromatic structures which are more readily retained as tar in rapid co-pyrolysis. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:74 / 82
页数:9
相关论文
共 50 条
  • [11] Assessment of low-rank coal and biomass co-pyrolysis system coupled with gasification
    Lyu, Shuang
    Cao, Tishan
    Zhang, Lei
    Liu, Jian
    Li, Guangyu
    Ren, Xiaohan
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (04) : 2652 - 2664
  • [12] Co-pyrolysis Properties and Product Composition of Low-Rank Coal and Heavy Oil
    Song, Yong-hui
    Ma, Qiao-na
    He, Wen-jin
    ENERGY & FUELS, 2017, 31 (01) : 217 - 223
  • [13] Co-pyrolysis of low-rank coal and waste truck-tire: A comprehensive study on product distributions, product properties, and synergistic effects
    Hong, Yu
    Guan, Jun
    Liang, Changhai
    Nie, Fan
    He, Demin
    Fan, Yuqiang
    Wang, Linfei
    Zhang, Qiumin
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2023, 170
  • [14] Research on co-pyrolysis characteristics of biomass and low-rank coal and its technical progress
    Dai C.
    Tian Y.
    Hu E.
    Li M.
    Ma D.
    Shao S.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (12): : 326 - 333
  • [15] Product distribution and interaction of co-pyrolysis of biomass and oil slurry
    Huang W.
    Hao Z.
    Zhang Q.
    Gao Z.
    Zhang H.
    Peng Z.
    Yang K.
    Liang L.
    Meitan Xuebao/Journal of the China Coal Society, 2022, 47 (01): : 480 - 488
  • [16] Product characteristics for fast co-pyrolysis of bituminous coal and biomass
    State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan
    030001, China
    不详
    100049, China
    不详
    274015, China
    Ranliao Huaxue Xuebao J. Fuel Chem. Technol., 6 (641-648):
  • [17] Low-temperature co-pyrolysis of a low-rank coal and biomass to prepare smokeless fuel briquettes
    Blesa, MJ
    Miranda, JL
    Moliner, R
    Izquierdo, MT
    Palacios, JM
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2003, 70 (02) : 665 - 677
  • [18] Co-pyrolysis of polypropylene and biomass
    Ye, J. L.
    Cao, Q.
    Zhao, Y. S.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2008, 30 (18) : 1689 - 1697
  • [19] Synergistic effects from co-pyrolysis of low-rank coal and model components of microalgae biomass
    Wu, Zhiqiang
    Yang, Wangcai
    Tian, Xueyu
    Yang, Bolun
    ENERGY CONVERSION AND MANAGEMENT, 2017, 135 : 212 - 225
  • [20] Co-pyrolysis of biomass and lignite: synergy effect on product yield and distribution
    Onay, Ozlem
    INTERNATIONAL JOURNAL OF OIL GAS AND COAL TECHNOLOGY, 2019, 22 (01) : 92 - 103