Geometrical validity of curvilinear finite elements

被引:64
|
作者
Johnen, A. [1 ]
Remacle, J. -F. [2 ]
Geuzaine, C. [1 ]
机构
[1] Univ Liege, Dept Elect Engn & Comp Sci, Montefiore Inst B28, B-4000 Liege, Belgium
[2] Catholic Univ Louvain, Inst Mech Mat & Civil Engn iMMC, B-1348 Louvain, Belgium
关键词
Finite element method; High-order methods; Mesh generation; Bezier functions; MESH GENERATION; DOMAINS;
D O I
10.1016/j.jcp.2012.08.051
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we describe a way to compute accurate bounds on Jacobian determinants of curvilinear polynomial finite elements. Our condition enables to guarantee that an element is geometrically valid, i.e., that its Jacobian determinant is strictly positive everywhere in its reference domain. It also provides an efficient way to measure the distortion of curvilinear elements. The key feature of the method is to expand the Jacobian determinant using a polynomial basis, built using Bezier functions, that has both properties of boundedness and positivity. Numerical results show the sharpness of our estimates. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:359 / 372
页数:14
相关论文
共 50 条
  • [41] Finite elements modelling of plastic zones spreading in the thin plates with geometrical discontinuities
    Pustaic, D
    STROJARSTVO, 2002, 44 (3-6): : 169 - 178
  • [42] Deteriorated geometrical stiffness for higher order finite elements with application to panel flutter
    Popescu, B
    NONLINEAR DYNAMICS, 1999, 18 (01) : 89 - 103
  • [43] Hierarchical Universal Matrices for Curvilinear Tetrahedral H(curl) Finite Elements With Inhomogeneous Material Properties
    Toth, Laszlo Levente
    Amor-Martin, Adrian
    Dyczij-Edlinger, Romanus
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2024, 72 (01) : 89 - 99
  • [44] Efficiency of nonparametric finite elements for optimal-order enforcement of Dirichlet conditions on curvilinear boundaries
    Ruas, Vitoriano
    Silva Ramos, Marco Antonio
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 394
  • [45] CURVILINEAR AND HIGHER-ORDER EDGE FINITE-ELEMENTS IN ELECTROMAGNETIC-FIELD COMPUTATION
    WANG, JS
    IDA, N
    IEEE TRANSACTIONS ON MAGNETICS, 1993, 29 (02) : 1491 - 1494
  • [46] Innovative class of curvilinear tetrahedral elements
    Martini, E
    Selleri, S
    ELECTRONICS LETTERS, 2001, 37 (09) : 557 - 558
  • [47] Wire curvilinear antennas with impedance elements
    Makarov, O. L.
    Ovsyanikov, V. V.
    Ol'Shevskiy, O. L.
    Popel', V. M.
    Romanenko, Y. D.
    2007 6TH INTERNATIONAL CONFERENCE ON ANTENNA THEORY AND TECHNIQUES, PROCEEDINGS, 2007, : 365 - +
  • [48] Curvilinear virtual elements for contact mechanics
    Aldakheel, Fadi
    Hudobivnik, Blaz
    Artioli, Edoardo
    da Veiga, Lourenco Beirao
    Wriggers, Peter
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 372
  • [49] Circular Metasurfaces for Curvilinear Radiating Elements
    Balanis, Constantine A.
    2019 IEEE INTERNATIONAL CONFERENCE ON MICROWAVES, ANTENNAS, COMMUNICATIONS AND ELECTRONIC SYSTEMS (COMCAS), 2019,
  • [50] Optimizing the geometrical accuracy of 2D curvilinear meshes
    Remacle, Jean-Francois
    Lambrechts, Jonathan
    Geuzaine, Christophe
    Toulorge, Thomas
    23RD INTERNATIONAL MESHING ROUNDTABLE (IMR23), 2014, 82 : 228 - 239