Perturbed ion traps:: A generalization of the three-dimensional Henon-Heiles problem

被引:14
|
作者
Lanchares, V [1 ]
Pascual, AI
Palacián, J
Yanguas, P
Salas, JP
机构
[1] Univ La Rioja, Dept Matemat & Computac, Lograno 26004, Spain
[2] Univ Publ Navarra, Dept Matemat & Informat, Pamplona, Spain
[3] Univ La Rioja, Area Fis Aplicada, Lograno 26004, Spain
关键词
D O I
10.1063/1.1449957
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents an analytical study of an axially symmetric perturbation of the Penning trap. This system is modeled as a generalization of the three-dimensional (3D) Henon-Heiles potential. Thus, the same techniques which succeeded in the study of the 3D Henon-Heiles system apply here. The departure Hamiltonian is three dimensional, although it possesses an axial symmetry. This property, together with an averaging process, is used to reduce the original system to an integrable one. We study the flow of the reduced Hamiltonian: equilibria, bifurcations, and stability, extracting thereafter the relevant information about the dynamics of the original problem. (C) 2002 American Institute of Physics.
引用
收藏
页码:87 / 99
页数:13
相关论文
共 50 条
  • [11] The maximum Lyapunov exponent of the chaotic motion in the Henon-Heiles problem
    Melnikov, AV
    Shevchenko, II
    ORDER AND CHAOS IN STELLAR AND PLANETARY SYSTEMS, 2004, 316 : 34 - 36
  • [12] A NOTE ON THE 3-PARTICLE LATTICE AND THE HENON-HEILES PROBLEM
    MILES, J
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1986, 46 (04) : 545 - 551
  • [13] Poincare sectionsfor two fixed centers problem and Henon-Heiles potential
    Malkov, E. A.
    Bekov, A. A.
    Momynov, S. B.
    Beckmuhamedov, I. B.
    Kurmangaliyev, D. M.
    Mukametzhan, A. M.
    Orynqul, I. S.
    RECENT CONTRIBUTIONS TO PHYSICS, 2020, 72 (01): : 4 - 10
  • [14] THE QUANTUM HENON-HEILES PROBLEM WITH CORIOLIS COUPLING - A COMPARISON OF ALGEBRAIC AND EXACT RESULTS
    SAGE, ML
    CHILD, MS
    JOURNAL OF CHEMICAL PHYSICS, 1989, 90 (12): : 7257 - 7263
  • [15] CONSTRUCTION OF A QUASICONSERVED QUANTITY IN THE HENON-HEILES PROBLEM USING A SINGLE SET OF VARIABLES
    FINKLER, P
    JONES, CE
    SOWELL, GA
    PHYSICAL REVIEW A, 1991, 44 (02): : 925 - 933
  • [16] NUMERICAL STUDY OF A HIGH-ORDER QUASICONSERVED QUANTITY IN THE HENON-HEILES PROBLEM
    FINKLER, P
    JONES, CE
    SOWELL, GA
    PHYSICAL REVIEW E, 1993, 48 (03): : 2288 - 2291
  • [17] INVESTIGATION OF TWO FIXED CENTERS PROBLEM AND HENON-HEILES POTENTIAL BASED ON THE POINCARE SECTION
    Malkov, E. A.
    Bekov, A. A.
    Momynov, S. B.
    Beckmuhamedov, I. B.
    Kurmangaliyev, D. M.
    Mukametzhan, A. M.
    Orynqul, I. S.
    NEWS OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN-SERIES PHYSICO-MATHEMATICAL, 2020, 1 (329): : 55 - 61
  • [18] Three-dimensional lattice of ion traps
    Ravi, K.
    Lee, Seunghyun
    Sharma, Arijit
    Ray, Tridib
    Werth, G.
    Rangwala, S. A.
    PHYSICAL REVIEW A, 2010, 81 (03):
  • [19] Fractal dimensions and escape rates in the two-dimensional Henon-Heiles potential and its deformation form
    Zhang Yan-Hui
    Shen Zhi-Peng
    Cai Xiang-Ji
    Xu Xiu-Lan
    Gao Song
    ACTA PHYSICA SINICA, 2015, 64 (23)
  • [20] A perturbed integral geometry problem in three-dimensional space
    Begmatov, AK
    SIBERIAN MATHEMATICAL JOURNAL, 2000, 41 (01) : 1 - 12