Technique for the measurement of picosecond optical pulses using a non-linear fiber loop mirror and an optical power meter

被引:3
|
作者
Korai, Umair A. [1 ,2 ]
Wang, Zifei [3 ]
Lacava, Cosimo [4 ]
Chen, Lawrence R. [3 ]
Glesk, Ivan [1 ]
Strain, Michael J. [5 ]
机构
[1] Univ Strathclyde, Dept Elect & Elect Engn, Glasgow G1 1XW, Lanark, Scotland
[2] Mehran Univ Engn & Technol, Dept Telecommun Engn, Jamshoro 72060, Pakistan
[3] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 0EP, Canada
[4] Univ Southampton, Optoelect Res Ctr, Southampton SO17 1BJ, Hants, England
[5] Univ Strathclyde, Inst Photon, Dept Phys, Glasgow G1 1RD, Lanark, Scotland
基金
欧盟地平线“2020”; 加拿大自然科学与工程研究理事会;
关键词
CROSS-PHASE-MODULATION; INTERFEROMETRY;
D O I
10.1364/OE.27.006377
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A method for measuring picosecond pulse width by using only fiber components and optical power meters is presented. We have shown that the output power splitting ratio of a non-linear fiber loop mirror can be used to extract the full-width half maximum of the optical pulse, assuming a known slowly varying envelope shape and internal phase structure. Theoretical evaluation was carried out using both self-phase and cross-phase modulation approaches, with the latter showing a twofold sensitivity increase, as expected. In the experimental validation, pulses from an actively fiber mode-locked laser at the repetition rate of 10 GHz were incrementally temporally dispersed by using SMF-28 fiber, and then successfully measured over a pulse width range of 2-10 ps, with a resolution of 0.25 ps. This range can be easily extended from 0.25 to 40 ps by selecting different physical setup parameters. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:6377 / 6388
页数:12
相关论文
共 50 条
  • [21] Optical pulse compression and amplitude noise reduction using a non-linear optical loop mirror including a distributed Gires-Tournois etalon
    Gonzalez-Garcia, A.
    Pottiez, O.
    Grajales-Coutino, R.
    Ibarra-Escamilla, B.
    Kuzin, E. A.
    OPTICS AND LASER TECHNOLOGY, 2010, 42 (07): : 1103 - 1111
  • [22] Surface studies using non-linear spectroscopy with tunable picosecond pulses
    Löbau, J
    Laubereau, A
    SUPERSTRONG LASER FIELDS AND APPLICATIONS - LASER OPTICS '98, 1998, 3683 : 96 - 107
  • [23] Generation of Optical Pulses with Continuously Tunable Pulsewidth Using SOA-based Fiber Loop Mirror
    Fu, Songnian
    Zhong, Wen-De
    Shum, P.
    Lin, Chinlong
    2009 14TH OPTOELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC 2009), 2009, : 408 - 409
  • [24] 640 Gbit/s Optical Time-Division Add-Drop Multiplexing in a Non-Linear Optical Loop Mirror
    Mulvad, H. C. Hansen
    Galili, M.
    Oxenlowe, L. K.
    Clausen, A. T.
    Jeppesen, P.
    Gruener-Nielsen, L.
    2009 IEEE/LEOS WINTER TOPICALS MEETING SERIES (WTM 2009), 2009, : 207 - +
  • [25] Optical power meter using radiation pressure measurement
    Pinot, Patrick
    Silvestri, Zaccaria
    MEASUREMENT, 2019, 131 : 109 - 119
  • [26] Fiber loop mirror-based optical transmissivity and optical phase retardation measurement architecture
    Sumriddetchkajorn, Sarun
    Katanyukunanon, Kanitha
    Srikhirin, Toernsak
    APPLIED OPTICS, 2007, 46 (35) : 8461 - 8465
  • [27] MEASUREMENT OF DISPERSION USING SHORT LENGTHS OF AN OPTICAL FIBER AND PICOSECOND PULSES FROM SEMICONDUCTOR FILM LASERS
    WIESENFELD, JM
    STONE, J
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 1984, 2 (04) : 464 - 468
  • [28] Photonic Instantaneous Frequency Measurement Using Non-Linear Optical Mixing
    Sarkhosh, Niusha
    Emami, Hossein
    Bui, Lam
    Mitchell, Arnan
    2008 IEEE MTT-S International Microwave Symposium Digest, Vols 1-4, 2008, : 598 - 600
  • [29] PROPAGATION OF NON-LINEAR OPTICAL PULSES IN INHOMOGENEOUS-MEDIA
    JAIN, M
    TZOAR, N
    JOURNAL OF APPLIED PHYSICS, 1978, 49 (09) : 4649 - 4654
  • [30] GROUP-VELOCITY DISPERSION MEASUREMENT USING SUPERCONTINUUM PICOSECOND PULSES GENERATED IN AN OPTICAL-FIBER
    MORI, K
    MORIOKA, T
    SARUWATARI, M
    ELECTRONICS LETTERS, 1993, 29 (11) : 987 - 989