3-DESIGNS FROM PSL(2,q) WITH q ≡ 1 (mod 4)

被引:0
|
作者
Chen, Jing [1 ]
Liu, Wei Jun [1 ]
机构
[1] Cent S Univ, Sch Math, Changsha 410075, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
LARGE SETS; PSL(2,2(N)); DESIGNS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the action of the group PSL(2, g) on the finite projective line GF(q) boolean OR {infinity} when q is a prime power congruent to 1 modulo 4 and construct several simple 3-(q+1,5, lambda) designs admitting PS L(2, q) as an automorphism group. Most of these designs with the given parameter sets were previously unknown.
引用
收藏
页码:211 / 222
页数:12
相关论文
共 50 条
  • [31] A Characterization of PSL(3. q) for q=2~m
    A.IRANMANESH
    S.H.ALAVI
    B.KHOSRAVI
    ActaMathematicaSinica(EnglishSeries), 2002, 18 (03) : 463 - 472
  • [32] PRIMITIVE BLOCK DESIGNS WITH AUTOMORPHISM GROUP PSL(2, q)
    Braic, Snjezana
    Mandic, Josko
    Vucicic, Tanja
    GLASNIK MATEMATICKI, 2015, 50 (01) : 1 - 15
  • [33] 典型群PSL(3,q),PSL(2,q)(q=2l)与2-(v,k,1)设计
    周胜林
    曲阜师范大学学报(自然科学版), 2001, (01) : 1 - 4
  • [34] Simple 3-designs of PSL(2, 2n) with block size 7
    Gong, Luozhong
    Fan, Guobing
    ARS COMBINATORIA, 2015, 121 : 131 - 139
  • [35] Simple 3-designs of PSL(2, 2n) with block size 7
    Li, Weixia
    Shen, Hao
    JOURNAL OF COMBINATORIAL DESIGNS, 2008, 16 (01) : 1 - 17
  • [36] Simple 3-designs of PSL(2, 2n) with block size 6
    Li, Weixia
    Shen, Hao
    DISCRETE MATHEMATICS, 2008, 308 (14) : 3061 - 3072
  • [37] SUBGROUPS OF PSL(3,Q] FOR ODD Q
    BLOOM, DM
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 127 (01) : 150 - &
  • [38] Simple 3-designs of PSL(2, 2n) with block size 8
    Gong, Luozhong
    Fan, Guobing
    UTILITAS MATHEMATICA, 2018, 106 : 3 - 9
  • [39] Generalized quadrangles admitting PSL (2,q) x PSL (2,q)
    Thas, K
    JOURNAL OF COMBINATORIAL DESIGNS, 2005, 13 (06) : 425 - 434
  • [40] Flag-transitive 4-(v, k, 4) Designs and PSL(2, q) Groups
    Dai, Shaojun
    Li, Shangzhao
    UTILITAS MATHEMATICA, 2017, 105 : 3 - 11