Fluorescence monitoring of microchip capillary electrophoresis separation with monolithically integrated waveguides

被引:23
|
作者
Dongre, Chaitanya [1 ]
Dekker, Ronald [1 ]
Hoekstra, Hugo J. W. M. [1 ]
Pollnau, Markus [1 ]
Martinez-Vazcluez, Rebeca [2 ]
Osellame, Roherto [2 ]
Cerullo, Giulio [2 ]
Ramponi, Roberta [2 ]
van Weeghel, Rob [3 ]
Besselink, Geert A. J. [4 ]
van den Vlekkert, Hans H. [4 ]
机构
[1] Univ Twente, Inst Nanotechnol, MESA, NL-7500 AE Enschede, Netherlands
[2] Politecn Milan, CNR, Ist Foton & Nanotecnol, Dipartimento Fis, I-20133 Milan, Italy
[3] Zebra Biosci BV, NL-7543 BK Enschede, Netherlands
[4] LioniX BV, NL-7500 AH Enschede, Netherlands
关键词
D O I
10.1364/OL.33.002503
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Using femtosecond laser writing, optical waveguides were monolithically integrated into a commercial microfluidic lab-on-a-chip device, with the waveguides intersecting a microfluidic channel. Continuous-wave laser excitation through these optical waveguides confines the excitation window to a width of 12 mu m, enabling high-resolution monitoring of the passage of different types of fluorescent analytes when migrating and being separated in the microfluidic channel by microchip capillary electrophoresis. Furthermore, we demonstrate on-chip-integrated waveguide excitation and detection of a biologically relevant species, fluorescently labeled DNA molecules, during microchip capillary electrophoresis. Well-controlled plug formation as required for on-chip integrated capillary electrophoresis separation of DNA molecules, and the combination of waveguide excitation and a low limit of detection, will enable monitoring of extremely small quantities with high spatial resolution. (C) 2008 Optical Society of America
引用
收藏
页码:2503 / 2505
页数:3
相关论文
共 50 条
  • [31] Effects of improved microchannel structures on the separation characteristics of microchip capillary electrophoresis
    Utsumi, Y
    Ozaki, M
    Terabe, S
    Hattori, T
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2003, 42 (6B): : 4098 - 4101
  • [32] Optimization of the Separation of NDA-Derivatized Methylarginines by Capillary and Microchip Electrophoresis
    Linz, Thomas H.
    Snyder, Christa M.
    Lunte, Susan M.
    JALA, 2012, 17 (01): : 24 - 31
  • [33] Applications of capillary electrophoresis on microchip
    Dolnik, V
    Liu, SR
    JOURNAL OF SEPARATION SCIENCE, 2005, 28 (15) : 1994 - 2009
  • [34] Microchip capillary electrophoresis/electrochemistry
    Lacher, NA
    Garrison, KE
    Martin, RS
    Lunte, SM
    ELECTROPHORESIS, 2001, 22 (12) : 2526 - 2536
  • [35] Optimal configuration of capillary electrophoresis microchip with expansion chamber in separation channel
    Tsai, Chien-Hsiung
    Hung, M. F.
    Chang, Chin-Lung
    Chen, Li-Wen
    Fu, Lung-Ming
    JOURNAL OF CHROMATOGRAPHY A, 2006, 1121 (01) : 120 - 128
  • [36] A special issue on high performance separation and analysis by capillary and microchip electrophoresis
    Otsuka, K
    ANALYTICAL SCIENCES, 2005, 21 (01) : 3 - 3
  • [37] Instrumentation for Capillary and Microchip Electrophoresis
    Carrilho, Emanuel
    Garcia, Carlos D.
    ELECTROPHORESIS, 2012, 33 (17) : 2613 - 2613
  • [38] Carbon nanotubes in capillary electrophoresis, capillary electrochromatography and microchip electrophoresis
    Pauwels, Jochen
    Van Schepdael, Ann
    CENTRAL EUROPEAN JOURNAL OF CHEMISTRY, 2012, 10 (03): : 785 - 801
  • [39] Capillary electrophoresis and microchip capillary electrophoresis with electrochemical and electrochemiluminescence detection
    Du, Yan
    Wang, Erkang
    JOURNAL OF SEPARATION SCIENCE, 2007, 30 (06) : 875 - 890
  • [40] Monolithically integrated μ-capillary electrophoresis with organic light sources and tunable a-Si:H multispectral photodiodes for fluorescence detection
    Merfort, Christian
    Seibel, Konstantin
    Watty, Krystian
    Boehm, Markus
    MICROELECTRONIC ENGINEERING, 2010, 87 (5-8) : 712 - 714