Path-integral Monte Carlo simulations for interacting few-electron quantum dots with spin-orbit coupling

被引:35
|
作者
Weiss, S [1 ]
Egger, R [1 ]
机构
[1] Univ Dusseldorf, Inst Theoret Phys, D-40225 Dusseldorf, Germany
关键词
D O I
10.1103/PhysRevB.72.245301
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop path-integral Monte Carlo simulations for a parabolic two-dimensional (2D) quantum dot containing N interacting electrons in the presence of Dresselhaus and/or Rashba spin-orbit couplings. Our method solves in a natural way the spin contamination problem and allows for numerically exact finite-temperature results at weak spin-orbit coupling. For N < 10 electrons, we present data for the addition energy, the particle density, and the total spin S in the Wigner molecule regime of strong Coulomb interactions. We identify magic numbers at N=3 and N=7 via a peak in the addition energy. These magic numbers differ both from weak interaction and classical predictions, and are stable with respect to (weak) spin-orbit couplings.
引用
收藏
页数:7
相关论文
共 50 条