Path-integral Monte Carlo simulations for interacting few-electron quantum dots with spin-orbit coupling

被引:35
|
作者
Weiss, S [1 ]
Egger, R [1 ]
机构
[1] Univ Dusseldorf, Inst Theoret Phys, D-40225 Dusseldorf, Germany
关键词
D O I
10.1103/PhysRevB.72.245301
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop path-integral Monte Carlo simulations for a parabolic two-dimensional (2D) quantum dot containing N interacting electrons in the presence of Dresselhaus and/or Rashba spin-orbit couplings. Our method solves in a natural way the spin contamination problem and allows for numerically exact finite-temperature results at weak spin-orbit coupling. For N < 10 electrons, we present data for the addition energy, the particle density, and the total spin S in the Wigner molecule regime of strong Coulomb interactions. We identify magic numbers at N=3 and N=7 via a peak in the addition energy. These magic numbers differ both from weak interaction and classical predictions, and are stable with respect to (weak) spin-orbit couplings.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Orbital Ferromagnetism in Interacting Few-Electron Dots with Strong Spin-Orbit Coupling
    Naseri, Amin
    Zazunov, Alex
    Egger, Reinhold
    PHYSICAL REVIEW X, 2014, 4 (03):
  • [2] Few-electron physics in a nanotube quantum dot with spin-orbit coupling
    Wunsch, B.
    PHYSICAL REVIEW B, 2009, 79 (23):
  • [3] Quantum rings with Rashba spin-orbit coupling: A path-integral approach
    Lucignano, P.
    Giuliano, D.
    Tagliacozzo, A.
    PHYSICAL REVIEW B, 2007, 76 (04)
  • [4] Tunability of Raman spectral signatures by Rashba spin-orbit interaction in few-electron quantum dots
    Manaselyan, A.
    Chakraborty, T.
    EPL, 2011, 94 (05)
  • [5] Coulomb versus spin-orbit interaction in few-electron carbon-nanotube quantum dots
    Secchi, Andrea
    Rontani, Massimo
    PHYSICAL REVIEW B, 2009, 80 (04)
  • [6] MONTE-CARLO CALCULATION OF FEW-ELECTRON SYSTEMS IN QUANTUM DOTS
    BOLTON, F
    SOLID-STATE ELECTRONICS, 1994, 37 (4-6) : 1159 - 1162
  • [7] Path-integral representation for quantum spin models: Application to the quantum cavity method and Monte Carlo simulations
    Krzakala, Florent
    Rosso, Alberto
    Semerjian, Guilhem
    Zamponi, Francesco
    PHYSICAL REVIEW B, 2008, 78 (13)
  • [8] Spin-orbit coupling in variational quantum Monte Carlo calculations
    Flad, HJ
    Dolg, M
    Shukla, A
    PHYSICAL REVIEW A, 1997, 55 (06) : 4183 - 4195
  • [9] Path-Integral Quantum Monte Carlo Techniques for Self-Assembled Quantum Dots
    Matthew Harowitz
    Daejin Shin
    John Shumway
    Journal of Low Temperature Physics, 2005, 140 : 211 - 226
  • [10] Path-integral quantum Monte Carlo techniques for self-assembled quantum dots
    Harowitz, M
    Shin, DJ
    Shumway, J
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2005, 140 (3-4) : 211 - 226