Using deep learning for short-term load forecasting

被引:29
|
作者
Bendaoud, Nadjib Mohamed Mehdi [1 ]
Farah, Nadir [1 ]
机构
[1] Univ Badji Mokhtar Annaba, Dept Comp Sci, Labged Lab, Annaba, Algeria
来源
NEURAL COMPUTING & APPLICATIONS | 2020年 / 32卷 / 18期
关键词
Short-term load forecasting; Convolutional Neural Network; Deep learning; Artificial intelligence; FUNCTION APPROXIMATION; REGRESSION; MODELS;
D O I
10.1007/s00521-020-04856-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Electricity is the most important source of energy that is exploited nowadays; it is essential for the economic development and the social stability, and this implies the need to model systems that keeps a perfect balance between supply and demand. This task depends heavily on identifying the factors that affect power consumption and improving the precision of the forecasted model. This paper presents a novel convolutional neural network (CNN) for short-term load forecasting (STLF); studies have been conducted to identify the different factors that affect the power consumption in Algeria (North Africa), and these studies helped to determine the inputs to the model. The proposed CNN uses a two-dimensional input unlike the conventional one-dimensional input used for STLF, and the results given by the CNN were compared to other artificial intelligence methods and demonstrated good results for both: one-quarter-ahead and 24-h-ahead forecast.
引用
收藏
页码:15029 / 15041
页数:13
相关论文
共 50 条
  • [41] Federated Learning for Short-Term Residential Load Forecasting
    Briggs, Christopher
    Fan, Zhong
    Andras, Peter
    IEEE OPEN ACCESS JOURNAL OF POWER AND ENERGY, 2022, 9 : 573 - 583
  • [42] Short-Term Electricity Load Forecasting with Machine Learning
    Madrid, Ernesto Aguilar
    Antonio, Nuno
    INFORMATION, 2021, 12 (02) : 1 - 21
  • [43] Deep Ensemble Learning Model for Short-Term Load Forecasting within Active Learning Framework
    Wang, Zengping
    Zhao, Bing
    Guo, Haibo
    Tang, Lingling
    Peng, Yuexing
    ENERGIES, 2019, 12 (20)
  • [44] SHORT-TERM LOAD FORECASTING
    GROSS, G
    GALIANA, FD
    PROCEEDINGS OF THE IEEE, 1987, 75 (12) : 1558 - 1573
  • [45] Short-Term Load Forecasting using A Long Short-Term Memory Network
    Liu, Chang
    Jin, Zhijian
    Gu, Jie
    Qiu, Caiming
    2017 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE EUROPE (ISGT-EUROPE), 2017,
  • [46] Deep Learning-Assisted Short-Term Power Load Forecasting Using Deep Convolutional LSTM and Stacked GRU
    Ullah, Fath U. Min
    Ullah, Amin
    Khan, Noman
    Lee, Mi Young
    Rho, Seungmin
    Baik, Sung Wook
    COMPLEXITY, 2022, 2022
  • [47] Deep Learning for Short-Term Load Forecasting-Industrial Consumer Case Study
    Ungureanu, Stefan
    Topa, Vasile
    Cziker, Andrei Cristinel
    APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [48] Short-Term Load Forecasting Method Based on Deep Reinforcement Learning for Smart Grid
    Guo, Wei
    Zhang, Kai
    Wei, Xinjie
    Liu, Mei
    MOBILE INFORMATION SYSTEMS, 2021, 2021
  • [49] Hierarchical Multiobjective Distributed Deep Learning for Residential Short-Term Electric Load Forecasting
    Sakuma, Yuiko
    Nishi, Hiroaki
    IEEE ACCESS, 2022, 10 : 69950 - 69962
  • [50] An ensemble deep learning model for short-term load forecasting based on ARIMA and LSTM
    Tang, Lingling
    Yi, Yulin
    Peng, Yuexing
    2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CONTROL, AND COMPUTING TECHNOLOGIES FOR SMART GRIDS (SMARTGRIDCOMM), 2019,