Improvement of the Cycling Stability of Li-Rich Layered Mn-Based Oxide Cathodes Modified by Nanoscale LaPO4 Coating

被引:63
|
作者
Zhang, Xiaohui [1 ]
Xie, Xin [1 ]
Yu, Ruizhi [1 ]
Zhou, Jiarong [1 ]
Huang, Yan [1 ]
Cao, Shuang [1 ]
Wang, Yu [1 ]
Tang, Ke [1 ]
Wu, Chun [2 ]
Wang, Xianyou [1 ]
机构
[1] Xiangtan Univ, Natl Local Joint Engn Lab Key Mat New Energy Stor, Hunan Prov Key Lab Electrochem Energy Storage & C, Natl Base Int Sci & Technol Cooperat,Sch Chem, Xiangtan 411105, Hunan, Peoples R China
[2] Changsha Univ Sci & Technol, Coll Mat Sci & Engn, Changsha 410114, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-rich; nanoscale modification layer; cyclic stability; ion conductivity; rate capability; LITHIUM-ION BATTERIES; ELECTROCHEMICAL PERFORMANCE; SURFACE MODIFICATION; DEPOSITION; CAPACITY; GITT;
D O I
10.1021/acsaem.9b00287
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surface modification is usually an effective strategy to improve the cycling stability and rate capability of the Li-rich layered oxide cathode materials. Herein, the high-crystallinity LaPO4 with good ionic conductivity was homogeneously deposited on the surface of Li-rich layered oxide by the slow formation of LaPO4 nanoparticles because of chelating effect between citric acid and La3+ as well as the using of appropriate phosphorus source. The surface structure and electrochemical properties of Li-rich Mn-based materials were characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), and galvanostatic charge/discharge tests. The results indicate that LaPO4 nanoparticles are homogeneously coated on the surface of Li-rich layered Mn-based oxide, and the modification of LaPO4 with appropriate nanoscale thickness can obviously promote the cycling stability and rate capability of cathode material. Especially, the material modified by 2 wt % LaPO4 shows an optimum cycling stability with capacity retention of 83.2% after 200 cycles at 1 C, the best structure stability, and delivers a discharge capacity of 146.2 mAh g(-1) even at a high current density of 10 C.
引用
收藏
页码:3532 / 3541
页数:19
相关论文
共 50 条
  • [41] Fundamental understanding of voltage decay in Li-rich Mn-based layered oxides cathode materials
    Xie, Huixian
    Xiao, Jiacheng
    Chen, Hongyi
    Zhang, Boyang
    Hui, Kwun Nam
    Zhang, Shanqing
    Liu, Chenyu
    Luo, Dong
    Lin, Zhan
    AAPPS BULLETIN, 2024, 34 (01):
  • [42] A highly homogeneous nanocoating strategy for Li-rich Mn-based layered oxides based on chemical conversion
    Ma, Jin
    Li, Biao
    An, Li
    Wei, Hang
    Wang, Xiayan
    Yu, Pingrong
    Xia, Dingguo
    JOURNAL OF POWER SOURCES, 2015, 277 : 393 - 402
  • [43] Regulation of Anion Redox Activity via Solid-Acid Modification for Highly Stable Li-Rich Mn-Based Layered Cathodes
    Wei, Han-xin
    Liu, Yu-ming
    Luo, Yu-hong
    Huang, Ying-de
    Tang, Lin-bo
    Wang, Zhen-yu
    Yan, Cheng
    Mao, Jing
    Dai, Ke-hua
    Wu, Qing
    Zhang, Xia-hui
    Zheng, Jun-chao
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (07)
  • [44] Borate-Based Surface Coating of Li-Rich Mn-Based Disordered Rocksalt Cathode Materials
    Moghadam, Yasaman Shirazi
    El Kharbachi, Abdel
    Cambaz, Musa Ali
    Dinda, Sirshendu
    Diemant, Thomas
    Hu, Yang
    Melinte, Georgian
    Fichtner, Maximilian
    ADVANCED MATERIALS INTERFACES, 2022, 9 (35)
  • [45] Modification Strategies of High-Energy Li-Rich Mn-Based Cathodes for Li-Ion Batteries: A Review
    Xi, Zhenjie
    Sun, Qing
    Li, Jing
    Qiao, Ying
    Min, Guanghui
    Ci, Lijie
    MOLECULES, 2024, 29 (05):
  • [46] Construction of LiNi0.5Mn1.5O4 Spinel Layer-Bearing Heterostructural Li-Rich Layered Oxide Cathodes with Enhanced Structural Integrity and Cycling Stability
    Mei, Jie
    Gao, Guiyang
    Chen, Yuanzhi
    Xu, Wanjie
    He, Wei
    Li, Saichao
    Xie, Qingshui
    Wang, Laisen
    Liu, Pengfei
    Zhu, Zi-Zhong
    Peng, Dong-Liang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (04) : 1353 - 1364
  • [47] Modification Strategy for Constructing Li Gradient Combined with Spinel Phase Coating on Li-Rich Mn-Based Materials
    Luo, Qi
    Kang, Jiankai
    Liao, Zijun
    Feng, Xingyi
    Zou, Hanbo
    Yang, Wei
    Pai, Chengchao
    Sun, Raymond Waiyin
    Chen, Shengzhou
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (04): : 4641 - 4650
  • [48] Enhancing cycling stability in Li-rich Mn-based cathode materials by solid-liquid-gas integrated interface engineering
    Guo, Weibin
    Zhang, Yinggan
    Lin, Liang
    He, Wei
    Zheng, Hongfei
    Lin, Jie
    Sa, Baisheng
    Wei, Qiulong
    Wang, Laisen
    Xie, Qingshui
    Peng, Dong-Liang
    NANO ENERGY, 2022, 97
  • [49] A composite surface configuration towards improving cycling stability of Li-rich layered oxide materials
    Shi, Zhepu
    Gu, Qingwen
    Yun, Liang
    Wei, Zhining
    Hu, Di
    Qiu, Bao
    Chen, George Zheng
    Liu, Zhaoping
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (43) : 24426 - 24437
  • [50] Li-Deficient Materials-Decoration Restrains Oxygen Evolution Achieving Excellent Cycling Stability of Li-Rich Mn-Based Cathode
    Ji, Xueqian
    Xu, Yuxing
    Xia, Qing
    Zhou, Yuncheng
    Song, Jiechen
    Feng, Hailan
    Wang, Pengfei
    Yang, Jun
    Tan, Qiangqiang
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (26) : 30133 - 30143