MR-guided delivery of AAV2-BDNF into the entorhinal cortex of non-human primates

被引:38
|
作者
Nagahara, Alan H. [1 ]
Wilson, Bayard R. [1 ]
Ivasyk, Iryna [1 ]
Kovacs, Imre [1 ]
Rawalji, Saytam [1 ]
Bringas, John R. [2 ]
Pivirotto, Phillip J. [2 ]
San Sebastian, Waldy [2 ]
Samaranch, Lluis [2 ]
Bankiewicz, Krystof S. [2 ]
Tuszynski, Mark H. [1 ,3 ]
机构
[1] Univ Calif San Diego, Dept Neurosci, La Jolla, CA 92093 USA
[2] Univ Calif San Francisco, Dept Neurol Surg, San Francisco, CA 94103 USA
[3] Vet Affairs Med Ctr, San Diego, CA 92161 USA
关键词
CONVECTION-ENHANCED DELIVERY; ALZHEIMERS-DISEASE; NEUROTROPHIC FACTOR; DENTATE GYRUS; GENE DELIVERY; BRAIN; MONKEY; PROPAGATION; MODELS; BDNF;
D O I
10.1038/s41434-018-0010-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Brain-derived neurotrophic factor (BDNF) gene delivery to the entorhinal cortex is a candidate for treatment of Alzheimer's disease (AD) to reduce neurodegeneration that is associated with memory loss. Accurate targeting of the entorhinal cortex in AD is complex due to the deep and atrophic state of this brain region. Using MRI-guided methods with convection-enhanced delivery, we were able to accurately and consistently target AAV2-BDNF delivery to the entorhinal cortex of non-human primates; 86 +/- 3% of transduced cells in the targeted regions co-localized with the neuronal marker NeuN. The volume of AAV2-BDNF (3 x 108 vg/mu l) infusion linearly correlated with the number of BDNF labeled cells and the volume (mm(3)) of BDNF immunoreactivity in the entorhinal cortex. BDNF is normally trafficked to the hippocampus from the entorhinal cortex; in these experiments, we also found that BDNF immunoreactivity was elevated in the hippocampus following therapeutic BDNF vector delivery to the entorhinal cortex, achieving growth factor distribution through key memory circuits. These findings indicate that MRI-guided infusion of AAV2-BDNF to the entorhinal cortex of the non-human primate results in safe and accurate targeting and distribution of BDNF to both the entorhinal cortex and the hippocampus. These methods are adaptable to human clinical trials.
引用
收藏
页码:104 / 114
页数:11
相关论文
共 50 条
  • [21] Biodistribution and Safety Study of AAV9 in Non-Human Primates
    Lostal, William
    Roudaut, Carinne
    Deschamps, Jack-Yves
    Richard, Isabelle
    MOLECULAR THERAPY, 2018, 26 (05) : 190 - 190
  • [22] Erratum: Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates
    S J Gray
    S Nagabhushan Kalburgi
    T J McCown
    R Jude Samulski
    Gene Therapy, 2013, 20 (4) : 465 - 465
  • [23] Optimization of intrathecal delivery of an infused AAV9 vector for delivery of a gene therapy candidate for adrenomyeloneuropathy in non-human primates
    Vasireddy, V.
    Clark, S. W.
    Anderson, D. W.
    Kozarsky, K.
    HUMAN GENE THERAPY, 2022, 33 (23-24) : A27 - A27
  • [24] In vivo selection in non-human primates identifies AAV capsids for on-target CSF delivery to spinal cord
    Hanlon, Killian S.
    Cheng, Ming
    Ferrer, Roberto Montoro
    Ryu, Jae Ryun
    Lee, Boram
    de la Cruz, Demitri
    Patel, Nikita
    Espinoza, Paula
    Santoscoy, Miguel C.
    Gong, Yi
    Ng, Carrie
    Nguyen, Diane M.
    Nammour, Josette
    Clark, Sean W.
    Heine, Vivi M.
    Sun, Woong
    Kozarsky, Karen
    Maguire, Casey A.
    MOLECULAR THERAPY, 2024, 32 (08) : 2584 - 2603
  • [25] Preclinical safety evaluation of subretinal AAV2.sFlt-1 in non-human primates
    C-M Lai
    M J Estcourt
    R P Himbeck
    S-Y Lee
    I Yew-San Yeo
    C Luu
    B K Loh
    M W Lee
    A Barathi
    J Villano
    C-L Ang
    R G van der Most
    I J Constable
    D Dismuke
    R J Samulski
    M A Degli-Esposti
    E P Rakoczy
    Gene Therapy, 2012, 19 : 999 - 1009
  • [26] Preclinical safety evaluation of subretinal AAV2.sFlt-1 in non-human primates
    Lai, C-M
    Estcourt, M. J.
    Himbeck, R. P.
    Lee, S-Y
    Yeo, I. Yew-San
    Luu, C.
    Loh, B. K.
    Lee, M. W.
    Barathi, A.
    Villano, J.
    Ang, C-L
    van der Most, R. G.
    Constable, I. J.
    Dismuke, D.
    Samulski, R. J.
    Degli-Esposti, M. A.
    Rakoczy, E. P.
    GENE THERAPY, 2012, 19 (10) : 999 - 1009
  • [27] Comparable efficiency of photoreceptor transduction by AAV2tYF, AAV5 and AAV8 in non-human primates
    Shearman, M. S.
    Song, C. J.
    Ye, G.
    Timmers, A. M.
    Newmark, J.
    HUMAN GENE THERAPY, 2018, 29 (12) : A153 - A153
  • [28] Optimizing Intravitreal Delivery to the Non-Human Primate Retina with Machine-Guided AAV Capsid Design
    Abesteh, Shireen
    Brenckle, Ian
    Cargill, Zac
    Chen, Ina
    Chen, Sam
    Deny, Daniela
    Fathima, Jumana
    Gerold, Jeff
    Ghosh, Arpan
    Grush, Jacob
    Kelsic, Eric
    Kuchwara, Helene Marie
    Kwasnieski, Jamie
    Lin, Kathy S.
    Lykken, Erik A.
    Marrogi, Eryney
    Maryak, Katie
    McDonel, Patrick
    Levitin, Hanna Mendes
    Miles, Amanda
    Nagabhushana, Nishith
    Pignatta, Daniela
    Satinsky, Brandon
    Saxena, Bhavica
    Sengel, Cem
    Sheridan, Abigail Rose
    Tarbell, Timothy
    Thommes, Meghan
    Turunen, Heikki
    White, Nick
    Wolock, Sam
    MOLECULAR THERAPY, 2023, 31 (04) : 610 - 610
  • [29] Delayed Inflammatory Response to Intravitreal AAV Gene Transfer in Non-Human Primates
    Wassmer, Sarah
    Comander, Jason
    Carvalho, Livia
    Xiao, Ru
    Plovic, Eva
    Langsdorf, Aliete
    Lim, Lawrence
    Hafler, Brian
    Wu, David M.
    Eliott, Dean
    Kim, Leo A.
    Vandenberghe, Luk H.
    MOLECULAR THERAPY, 2016, 24 : S35 - S35
  • [30] AAV9-mediated engineering of autotransplanted kidney of non-human primates
    Tomasoni, S.
    Trionfini, P.
    Azzollini, N.
    Zentilin, L.
    Giacca, M.
    Aiello, S.
    Longaretti, L.
    Cozzi, E.
    Baldan, N.
    Remuzzi, G.
    Benigni, A.
    GENE THERAPY, 2017, 24 (05) : 308 - 313