Optimal soaring via Hamilton-Jacobi-Bellman equations

被引:6
|
作者
Almgren, Robert [1 ,2 ]
Tourin, Agnes [3 ]
机构
[1] Quantitat Brokers LLC, New York, NY 10012 USA
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[3] NYU, Dept Finance & Risk Engn, Polytech Sch Engn, Brooklyn, NY 11201 USA
来源
基金
加拿大自然科学与工程研究理事会;
关键词
Hamilton-Jacobi equations; glider flying; Variational Inequalities; stochastic control; finite difference; monotone approximation;
D O I
10.1002/oca.2122
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Competition glider flying is a game of stochastic optimization, in which mathematics and quantitative strategies have historically played an important role. We address the problem of uncertain future atmospheric conditions by constructing a nonlinear Hamilton-Jacobi-Bellman equation for the optimal speed to fly, with a free boundary describing the climb/cruise decision. We consider two different forms of knowledge about future atmospheric conditions, the first in which the pilot has complete foreknowledge and the second in which the state of the atmosphere is a Markov process discovered by flying through it. We compute an accurate numerical solution by designing a robust monotone finite difference method. The results obtained are of direct applicability for glider flight. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:475 / 495
页数:21
相关论文
共 50 条
  • [21] A SPLITTING ALGORITHM FOR HAMILTON-JACOBI-BELLMAN EQUATIONS
    FALCONE, M
    LANUCARA, P
    SEGHINI, A
    APPLIED NUMERICAL MATHEMATICS, 1994, 15 (02) : 207 - 218
  • [22] STOCHASTIC EQUATIONS WITH DELAY: OPTIMAL CONTROL VIA BSDEs AND REGULAR SOLUTIONS OF HAMILTON-JACOBI-BELLMAN EQUATIONS
    Fuhrman, Marco
    Masiero, Federica
    Tessitore, Gianmario
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2010, 48 (07) : 4624 - 4651
  • [23] HAMILTON-JACOBI-BELLMAN EQUATIONS FOR THE OPTIMAL CONTROL OF A STATE EQUATION WITH MEMORY
    Carlier, Guillaume
    Tahraoui, Rabah
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2010, 16 (03): : 744 - 763
  • [24] Comparison Principle for Hamilton-Jacobi-Bellman Equations via a Bootstrapping Procedure
    Richard C. Kraaij
    Mikola C. Schlottke
    Nonlinear Differential Equations and Applications NoDEA, 2021, 28
  • [25] Comparison Principle for Hamilton-Jacobi-Bellman Equations via a Bootstrapping Procedure
    Kraaij, Richard C.
    Schlottke, Mikola C.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 28 (02):
  • [26] MULTIGRID METHODS FOR SECOND ORDER HAMILTON-JACOBI-BELLMAN AND HAMILTON-JACOBI-BELLMAN-ISAACS EQUATIONS
    Han, Dong
    Wan, Justin W. L.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (05): : S323 - S344
  • [27] Transmission conditions on interfaces for Hamilton-Jacobi-Bellman equations
    Rao, Z.
    Siconolfi, A.
    Zidani, H.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (11) : 3978 - 4014
  • [28] Hamilton-Jacobi-Bellman equations for optimal control processes with convex state constraints
    Hermosilla, Cristopher
    Vinter, Richard
    Zidani, Hasnaa
    SYSTEMS & CONTROL LETTERS, 2017, 109 : 30 - 36
  • [29] Adaptive spline interpolation for Hamilton-Jacobi-Bellman equations
    Bauer, Florian
    Gruene, Lars
    Semmler, Willi
    APPLIED NUMERICAL MATHEMATICS, 2006, 56 (09) : 1196 - 1210
  • [30] VISCOSITY SOLUTIONS OF STOCHASTIC HAMILTON-JACOBI-BELLMAN EQUATIONS
    Qiu, Jinniao
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (05) : 3708 - 3730