Wiener's lemma for localized integral operators

被引:21
|
作者
Sun, Qiyu [1 ]
机构
[1] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
D O I
10.1016/j.acha.2007.10.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce two classes of localized integral operators on L-2(R-d) with the Wiener class W and the Kurbatov class K of integral operators as their models. We show that those two classes of localized integral operators are pseudo-inverse closed non-unital subalgebra of B-2, the Banach algebra of all bounded operators on L-2(R-d) with usual operator norm. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:148 / 167
页数:20
相关论文
共 50 条
  • [1] Wiener’s lemma for singular integral operators of Bessel potential type
    Qiquan Fang
    Chang Eon Shin
    Qiyu Sun
    Monatshefte für Mathematik, 2014, 173 : 35 - 54
  • [2] Wiener's lemma for singular integral operators of Bessel potential type
    Fang, Qiquan
    Shin, Chang Eon
    Sun, Qiyu
    MONATSHEFTE FUR MATHEMATIK, 2014, 173 (01): : 35 - 54
  • [3] A WEIGHTED WIENER'S LEMMA FOR INTEGRAL OPERATORS WITH SCHUR-TYPE OR ESSENTIAL-SUPREMUM KERNEL DECAY CONDITIONS
    Beaver, Scott
    HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (01): : 261 - 273
  • [4] On Wiener's Tauberian theorems and convolution for oscillatory integral operators
    de Castro, Luis Pinheiro
    Guerra, Rita Correia
    Nguyen Minh Tuan
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (03) : 1124 - 1147
  • [5] Wiener algebras of Fourier integral operators
    Cordero, Elena
    Groechenig, Karlheinz
    Nicola, Fabio
    Rodino, Luigi
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 99 (02): : 219 - 233
  • [6] Wiener’s Lemma and Memory Localization
    Ilya A. Krishtal
    Journal of Fourier Analysis and Applications, 2011, 17 : 674 - 690
  • [7] WIENER'S LEMMA: PICTURES AT AN EXHIBITION
    Krishtal, Ilya A.
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2011, 52 (02): : 61 - 79
  • [8] Wiener's Lemma and Memory Localization
    Krishtal, Ilya A.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (04) : 674 - 690
  • [9] Wiener's lemma for infinite matrices
    Sun, Qiyu
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (07) : 3099 - 3123
  • [10] Unbounded Wiener–Hopf Operators and Isomorphic Singular Integral Operators
    Domenico P. L. Castrigiano
    Complex Analysis and Operator Theory, 2021, 15