Wiener algebras of Fourier integral operators

被引:44
|
作者
Cordero, Elena [1 ]
Groechenig, Karlheinz [2 ]
Nicola, Fabio [3 ]
Rodino, Luigi [1 ]
机构
[1] Univ Turin, Dept Math, I-10123 Turin, Italy
[2] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[3] Politecn Torino, Dipartimento Sci Matemat, I-10129 Turin, Italy
来源
基金
奥地利科学基金会;
关键词
Fourier integral operators; Modulation spaces; Short-time Fourier transform; Gabor frames; Wiener algebra; TIME-FREQUENCY ANALYSIS; PSEUDODIFFERENTIAL-OPERATORS; SPECTRAL-INVARIANCE; BANACH-ALGEBRAS;
D O I
10.1016/j.matpur.2012.06.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a one-parameter family of algebras FIO(Xi, s), 0 <= s <= infinity, consisting of Fourier integral operators. We derive boundedness results, composition rules, and the spectral invariance of the operators in FIO(Xi, s). The operator algebra is defined by the decay properties of an associated Gabor matrix around the graph of the canonical transformation. In particular, for the limit case s = infinity, our Gabor technique provides a new approach to the analysis of S-0,0(0)-type Fourier integral operators, for which the global calculus represents a still open relevant problem. (C) 2012 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:219 / 233
页数:15
相关论文
共 50 条