Connectivity by geodesics in open subsets of globally hyperbolic spacetimes

被引:1
|
作者
Bartolo, Rossella [1 ]
Candela, Anna Maria [2 ]
Luis Flores, Jose [3 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, Via E Orabona 4, I-70125 Bari, Italy
[2] Univ Bari Aldo Moro, Dipartimento Matemat, I-70125 Bari, Italy
[3] Univ Malaga, Fac Ciencias, Dept Algebra Geometria & Topol, E-29071 Malaga, Spain
关键词
Geodesic connectedness; global hyperbolicity; Killing vector field; Cauchy surface; stationary spacetime; generalized plane wave; CAUCHY HYPERSURFACES; EXISTENCE; MANIFOLDS; BOUNDARY;
D O I
10.1142/S0219887815600099
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss the geodesic connectedness problem in open subsets with convex boundary of globally hyperbolic spacetimes endowed with a complete, timelike or lightlike, Killing vector field. Furthermore, we furnish applications to generalized plane waves.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Connectivity by geodesics on globally hyperbolic spacetimes with a lightlike Killing vector field
    Bartolo, Rossella
    Candela, Anna Maria
    Luis Flores, Jose
    REVISTA MATEMATICA IBEROAMERICANA, 2017, 33 (01) : 1 - 28
  • [2] Globally Hyperbolic Spacetimes as Posets
    Sharifzadeh, Mehdi
    Abad, Masoud Bahrami Seif
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2019, 22 (04)
  • [3] Globally Hyperbolic Spacetimes as Posets
    Mehdi Sharifzadeh
    Masoud Bahrami Seif Abad
    Mathematical Physics, Analysis and Geometry, 2019, 22
  • [4] Causal bubbles in globally hyperbolic spacetimes
    Leonardo García-Heveling
    Elefterios Soultanis
    General Relativity and Gravitation, 2022, 54
  • [6] Abelian Duality on Globally Hyperbolic Spacetimes
    Becker, Christian
    Benini, Marco
    Schenkel, Alexander
    Szabo, Richard J.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 349 (01) : 361 - 392
  • [7] A CLOSURE RESULT FOR GLOBALLY HYPERBOLIC SPACETIMES
    Catino, Giovanni
    Roncoroni, Alberto
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024,
  • [8] Abelian Duality on Globally Hyperbolic Spacetimes
    Christian Becker
    Marco Benini
    Alexander Schenkel
    Richard J. Szabo
    Communications in Mathematical Physics, 2017, 349 : 361 - 392
  • [9] Causal bubbles in globally hyperbolic spacetimes
    Garcia-Heveling, Leonardo
    Soultanis, Elefterios
    GENERAL RELATIVITY AND GRAVITATION, 2022, 54 (12)
  • [10] Green-Hyperbolic Operators on Globally Hyperbolic Spacetimes
    Christian Bär
    Communications in Mathematical Physics, 2015, 333 : 1585 - 1615