Left loops, bipartite graphs with parallelism and bipartite involution sets

被引:4
|
作者
Karzel, H [1 ]
Pianta, S
机构
[1] Tech Univ Munich, Zentrum Math, D-80290 Munich, Germany
[2] Univ Cattolica, Dipartimento Matemat & Fis, I-25121 Brescia, Italy
关键词
graphs; loops; involution sets;
D O I
10.1007/BF02942043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe a representation of any semiregular left loop by means of a semiregular bipartite involution set or, equivalently, a 1-factorization (i.e., a parallelism) of a bipartite graph, with at least one transitive vertex. In these correspondences, Bol loops are associated on one hand to invariant regular bipartite involution sets and, on the other hand, to trapezium complete bipartite graphs with parallelism; K-loops (or Bruck loops) are further characterized by a sort of local Pascal configuration in the related graph.
引用
收藏
页码:203 / 214
页数:12
相关论文
共 50 条
  • [31] Counting independent sets in graphs with bounded bipartite pathwidth
    Dyer, Martin
    Greenhill, Catherine
    Muller, Haiko
    RANDOM STRUCTURES & ALGORITHMS, 2021, 59 (02) : 204 - 237
  • [32] Neighborhood conditions for balanced independent sets in bipartite graphs
    Amar, D
    Brandt, S
    Brito, D
    Ordaz, O
    DISCRETE MATHEMATICS, 1998, 181 (1-3) : 31 - 36
  • [33] BIPARTITE GRAPHS
    JAGERS, AA
    AMERICAN MATHEMATICAL MONTHLY, 1977, 84 (09): : 748 - 748
  • [34] Counting Independent Sets in Graphs with Bounded Bipartite Pathwidth
    Dyer, Martin
    Greenhill, Catherine
    Mueller, Haiko
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2019), 2019, 11789 : 298 - 310
  • [35] Counting dominating sets in some subclasses of bipartite graphs
    Lin, Min-Sheng
    THEORETICAL COMPUTER SCIENCE, 2022, 923 : 337 - 347
  • [36] A combinatorial algorithm for weighted stable sets in bipartite graphs
    Faigle, U
    Frahling, G
    DISCRETE APPLIED MATHEMATICS, 2006, 154 (09) : 1380 - 1391
  • [37] Circular convex bipartite graphs: Feedback vertex sets
    Liu, Tian
    Lu, Min
    Lu, Zhao
    Xu, Ke
    THEORETICAL COMPUTER SCIENCE, 2014, 556 : 55 - 62
  • [38] Tractable Feedback Vertex Sets in Restricted Bipartite Graphs
    Jiang, Wei
    Liu, Tian
    Xu, Ke
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, 2011, 6831 : 424 - +
  • [39] A NOTE ON SIGNED DEGREE SETS IN SIGNED BIPARTITE GRAPHS
    Pirzada, S.
    Naikoo, T. A.
    Dar, F. A.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2008, 2 (01) : 114 - 117
  • [40] SIZE RAMSEY NUMBER OF BIPARTITE GRAPHS AND BIPARTITE RAMANUJAN GRAPHS
    Javadi, R.
    Khoeini, F.
    TRANSACTIONS ON COMBINATORICS, 2019, 8 (02) : 45 - 51