Left loops, bipartite graphs with parallelism and bipartite involution sets

被引:4
|
作者
Karzel, H [1 ]
Pianta, S
机构
[1] Tech Univ Munich, Zentrum Math, D-80290 Munich, Germany
[2] Univ Cattolica, Dipartimento Matemat & Fis, I-25121 Brescia, Italy
关键词
graphs; loops; involution sets;
D O I
10.1007/BF02942043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe a representation of any semiregular left loop by means of a semiregular bipartite involution set or, equivalently, a 1-factorization (i.e., a parallelism) of a bipartite graph, with at least one transitive vertex. In these correspondences, Bol loops are associated on one hand to invariant regular bipartite involution sets and, on the other hand, to trapezium complete bipartite graphs with parallelism; K-loops (or Bruck loops) are further characterized by a sort of local Pascal configuration in the related graph.
引用
收藏
页码:203 / 214
页数:12
相关论文
共 50 条
  • [1] Left loops, bipartite graphs with parallelism and bipartite involution sets
    H. Karzel
    S. Pianta
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2005, 75 : 203 - 214
  • [2] Symmetric Bipartite Graphs and Graphs with Loops
    Cairns, Grant
    Mendan, Stacey
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2015, 17 (01): : 97 - 102
  • [3] Critical Sets in Bipartite Graphs
    Levit, Vadim E.
    Mandrescu, Eugen
    ANNALS OF COMBINATORICS, 2013, 17 (03) : 543 - 548
  • [4] Critical Sets in Bipartite Graphs
    Vadim E. Levit
    Eugen Mandrescu
    Annals of Combinatorics, 2013, 17 : 543 - 548
  • [5] MAXIMAL INDEPENDENT SETS IN BIPARTITE GRAPHS
    LIU, JQ
    JOURNAL OF GRAPH THEORY, 1993, 17 (04) : 495 - 507
  • [6] On friendly index sets of bipartite graphs
    Lee, Sin-Min
    Ng, Ho Kuen
    ARS COMBINATORIA, 2008, 86 : 257 - 271
  • [7] DOMINATING SETS FOR SPLIT AND BIPARTITE GRAPHS
    BERTOSSI, AA
    INFORMATION PROCESSING LETTERS, 1984, 19 (01) : 37 - 40
  • [8] Bipartite graphs as polynomials and polynomials as bipartite graphs
    Grinblat, Andrey
    Lopatkin, Viktor
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (05)
  • [9] Convex bipartite graphs and bipartite circle graphs
    Kizu, T
    Haruta, Y
    Araki, T
    Kashiwabara, T
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1998, E81A (05) : 789 - 795
  • [10] Counting independent sets in unbalanced bipartite graphs
    Cannon, Sarah
    Perkins, Will
    PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA'20), 2020, : 1456 - 1466