Conditional maximum likelihood estimation for a class of observation-driven time series models for count data

被引:17
|
作者
Cui, Yunwei [1 ]
Zheng, Qi [2 ]
机构
[1] Towson Univ, Dept Math, Towson, MD 21252 USA
[2] Univ Louisville, Dept Bioinformat & Biostat, Louisville, KY 40202 USA
关键词
Observation-driven models; One-parameter exponential family; INGARCH(p; q); models; Time series of counts; INFERENCE;
D O I
10.1016/j.spl.2016.11.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper investigates the statistical inference for a class of observation-driven time series models of count data based on the conditional maximum likelihood estimator (CMLE), where the conditional distribution of the observed count given a state process is from the one-parameter exponential family. Under certain regularity conditions, the strong consistency and asymptotic normality of the CMLE of the misspecified likelihood function are established. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:193 / 201
页数:9
相关论文
共 50 条
  • [31] Maximum Likelihood Estimation for an Observation Driven Model for Poisson Counts
    Richard A. Davis
    William T. M. Dunsmuir
    Sarah B. Streett
    Methodology and Computing in Applied Probability, 2005, 7 : 149 - 159
  • [32] Maximum likelihood estimation for an observation driven model for Poisson counts
    Davis, RA
    Dunsmuir, WTM
    Streett, SB
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2005, 7 (02) : 149 - 159
  • [33] Maximum likelihood estimation for score-driven models
    Blasques, Francisco
    van Brummelen, Janneke
    Koopman, Siem Jan
    Lucas, Andre
    JOURNAL OF ECONOMETRICS, 2022, 227 (02) : 325 - 346
  • [34] Finite Mixture Model: A Maximum Likelihood Estimation Approach On Time Series Data
    Yen, Phoong Seuk
    Ismail, Mohd Tahir
    Hamzah, Firdaus Mohamad
    STATISTICS AND OPERATIONAL RESEARCH INTERNATIONAL CONFERENCE (SORIC 2013), 2014, 1613 : 130 - 137
  • [35] Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models
    Koopman, Siem Jan
    Lucas, Andre
    Scharth, Marcel
    REVIEW OF ECONOMICS AND STATISTICS, 2016, 98 (01) : 97 - 110
  • [36] Nonlinear maximum likelihood estimation of autoregressive time series
    McWhorter, LT
    Scharf, LL
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (12) : 2909 - 2919
  • [37] MAXIMUM-LIKELIHOOD ESTIMATION OF AUTOREGRESSIVE MODELS WITH CONDITIONAL INDEPENDENCE CONSTRAINTS
    Songsiri, Jitkomut
    Dahl, Joachim
    Vandenberghe, Lieven
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1701 - +
  • [38] Quasi-maximum likelihood estimation of conditional autoregressive Wishart models
    Asai, Manabu
    So, Mike K. P.
    JOURNAL OF TIME SERIES ANALYSIS, 2021, 42 (03) : 271 - 294
  • [39] Gaussian maximum likelihood estimation for ARMA models. I. Time series
    Yao, Qiwei
    Brockwell, Peter J.
    JOURNAL OF TIME SERIES ANALYSIS, 2006, 27 (06) : 857 - 875
  • [40] Exact maximum likelihood estimation of structured or unit root multivariate time series models
    Melard, G
    Roy, R
    Saidi, A
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (11) : 2958 - 2986