Space microgravity improves proliferation of human iPSC-derived cardiomyocytes

被引:20
|
作者
Rampoldi, Antonio [1 ,2 ]
Forghani, Parvin [1 ,2 ]
Li, Dong [1 ,2 ]
Hwang, Hyun [1 ,2 ]
Armand, Lawrence Christian [1 ,2 ]
Fite, Jordan [3 ]
Boland, Gene [3 ]
Maxwell, Joshua [1 ,2 ]
Maher, Kevin [1 ,2 ]
Xu, Chunhui [1 ,2 ,4 ,5 ]
机构
[1] Emory Univ, Dept Pediat, Sch Med, Atlanta, GA 30322 USA
[2] Emory Univ, Childrens Healthcare Atlanta, Atlanta, GA 30322 USA
[3] Techshot Inc, Greenville, IN USA
[4] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30318 USA
[5] Emory Univ, Atlanta, GA 30318 USA
来源
STEM CELL REPORTS | 2022年 / 17卷 / 10期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
PLURIPOTENT STEM-CELLS; GROWING TISSUES; PROTEIN; DIFFERENTIATION; ANGIOPOIETIN-2; BIOREACTOR; MATURATION;
D O I
10.1016/j.stemcr.2022.08.007
中图分类号
Q813 [细胞工程];
学科分类号
摘要
In microgravity, cells undergo profound changes in their properties. However, how human cardiac progenitors respond to space micro -gravity is unknown. In this study, we evaluated the effect of space microgravity on differentiation of human induced pluripotent stem cell (hiPSC)-derived cardiac progenitors compared with 1G cultures on the International Space Station (ISS). Cryopreserved 3D cardiac pro-genitors were cultured for 3 weeks on the ISS. Compared with 1G cultures, the microgravity cultures had 3-fold larger sphere sizes, 20-fold higher counts of nuclei, and increased expression of proliferation markers. Highly enriched cardiomyocytes generated in space micro -gravity showed improved Ca2+ handling and increased expression of contraction-associated genes. Short-term exposure (3 days) of car-diac progenitors to space microgravity upregulated genes involved in cell proliferation, survival, cardiac differentiation, and contraction, consistent with improved microgravity cultures at the late stage. These results indicate that space microgravity increased proliferation of hiPSC-cardiomyocytes, which had appropriate structure and function.
引用
收藏
页码:2272 / 2285
页数:14
相关论文
共 50 条
  • [21] Human iPSC-derived cardiomyocytes and pyridyl-phenyl mexiletine analogs
    Johnson, Mark
    Gomez-Galeno, Jorge
    Ryan, Daniel
    Okolotowicz, Karl
    McKeithan, Wesley L.
    Sampson, Kevin J.
    Kass, Robert S.
    Mercola, Mark
    Cashman, John R.
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2021, 46
  • [22] Rapid Assessment of Proarrhythmic Potential Using Human iPSC-Derived Cardiomyocytes
    Geiger, Robert M.
    Klein, Michael G.
    Fatima, Naheed
    Goldstein, Robert E.
    Krantz, Mori J.
    Haigney, Mark C.
    Flagg, Thomas P.
    JACC-CLINICAL ELECTROPHYSIOLOGY, 2020, 6 (14) : 1860 - 1862
  • [23] Sarcomere disassembly and transfection efficiency in proliferating human iPSC-derived cardiomyocytes
    Yuan, Qianliang
    Maas, Renee
    Brouwer, Ellen
    Sluijter, Joost
    Van der Velden, Jolanda
    Buikema, Jan Willem
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2022, 173 : S177 - S180
  • [24] Sarcomere Disassembly and Transfection Efficiency in Proliferating Human iPSC-Derived Cardiomyocytes
    Yuan, Qianliang
    Maas, Renee G. C.
    Brouwer, Ellen C. J.
    Pei, Jiayi
    Blok, Christian Snijders
    Popovic, Marko A.
    Paauw, Nanne J.
    Bovenschen, Niels
    Hjortnaes, Jesper
    Harakalova, Magdalena
    Doevendans, Pieter A.
    Sluijter, Joost P. G.
    van der Velden, Jolanda
    Buikema, Jan W.
    JOURNAL OF CARDIOVASCULAR DEVELOPMENT AND DISEASE, 2022, 9 (02)
  • [25] Assay considerations for measuring metabolic function of human iPSC-derived cardiomyocytes
    Livingston, Megan K.
    Meyer, Nathan C.
    Rieger, Cara R.
    Carlson, Coby B.
    Vaidyanathan, Ravi
    JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS, 2023, 123
  • [26] Structural remodeling triggers functional maturation in human iPSC-derived cardiomyocytes
    Kermani, Fatemeh
    Lemma, Enrico
    Rapti, Kleopatra
    Grimm, Dirk
    Bastmeyer, Martin
    Hecker, Markus
    Ullrich, Nina
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2022, 173 : S59 - S59
  • [27] Functional maturation of human iPSC-derived cardiomyocytes and assessment of inotropic compounds
    Zhang, Xiaoyu
    Abassi, Yama A.
    JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS, 2018, 93 : 170 - 171
  • [28] Combination of Triiodothyronine and Dexamethasone with Flexible Matrigel Substrate Improves Structural and Electrophysiological Maturation of Human iPSC-derived Cardiomyocytes
    Wang, Lili
    Gomez-hurtado, Maria de las Nieves
    Blackwell, Daniel
    Kim, Kyungsoo
    Parikh, Shan
    Knollmann, Bjorn C.
    CIRCULATION RESEARCH, 2017, 121
  • [29] IGFBP2 Overcomes Cell Contact- mediated Proliferation Inhibition In Human IPSC-derived Cardiomyocytes
    Lee, Soah
    Heinrich, Paul
    Lee, Daniel
    Goodyer, William R.
    Galdos, Francisco X.
    Zhu, Han
    Samad, Tahmina
    Xu, Sidra
    Lee, Carissa
    Duan, Lauren
    Wu, Sean M.
    CIRCULATION RESEARCH, 2022, 131
  • [30] Co-culture with neonatal cardiomyocytes enhances the proliferation of iPSC-derived cardiomyocytes via FAK/JNK signaling
    Ou, Dongbo
    Wang, Qi
    Huang, Yanjin
    Zeng, Di
    Wei, Ting
    Ding, Lu
    Li, Xiaoli
    Zheng, Qiangsun
    Jin, Yan
    BMC DEVELOPMENTAL BIOLOGY, 2016, 16