Effect of Parameters on Carbon Nanotubes Grown by Floating Catalyst Chemical Vapor Deposition

被引:4
|
作者
Lim, S. Y. [1 ]
Norani, M. M. [1 ]
Suriati, S. [1 ]
机构
[1] Univ Teknol PETRONAS, Dept Fundamental & Appl Sci, Tronoh 31750, Perak, Malaysia
关键词
Floating catalytic chemical vapor deposition; carbon nanotubes; crystallinity; TEMPERATURE-DEPENDENT GROWTH; FERROCENE; DIAMETER; DECOMPOSITION; PRESSURE; REACTOR;
D O I
10.1063/1.4769148
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
There is a critical need to understand the effect of the growth parameters on the characteristics of carbon nanotubes (CNTs) in order to optimize the process for the production of CNTs with specific characteristics that will exhibit enhanced functionality for the application. Floating Catalytic Chemical Vapor Deposition (FCCVD) is a promising method to produce high yield bulk CNTs. Effects of parameters namely flow rate of ethylene and argon, reaction temperature and weight of ferrocene on CNTs grown by FCCVD were investigated. The growth of CNTs began with the vaporization of an amount of ferrocene at 150 degrees C under argon ambient followed by exposure to ethylene at different temperatures. Properties of CNTs such as crystallinity and diameter were determined using Scanning Electron Microscopy and Transmission Electron Microscopy and Raman Spectroscopy. Temperature of 800 degrees C and 850 degrees C are found to be suitable for CNTs growth with the temperature of 850 degrees C producing bigger diameter CNTs. Low flow rate of ethylene (20 sccm) produced CNTs with higher degree of crystallinity.
引用
收藏
页码:242 / 254
页数:13
相关论文
共 50 条
  • [31] Formation of Catalyst Nanoparticles and Nucleation of Carbon Nanotubes in Chemical Vapor Deposition
    Verissimo, C.
    Aguiar, M. R.
    Moshkalev, S. A.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2009, 9 (07) : 4459 - 4466
  • [32] Effect of chemical vapor deposition parameters on the diameter of multi-walled carbon nanotubes
    Sivamaran Venkatesan
    Balasubramanian Visvalingam
    Gopalakrishnan Mannathusamy
    Viswabaskaran Viswanathan
    A. Gourav Rao
    International Nano Letters, 2018, 8 (4) : 297 - 308
  • [33] Effect of chemical vapor deposition parameters on the diameter of multi-walled carbon nanotubes
    Venkatesan, Sivamaran
    Visvalingam, Balasubramanian
    Mannathusamy, Gopalakrishnan
    Viswanathan, Viswabaskaran
    Rao, A. Gourav
    INTERNATIONAL NANO LETTERS, 2018, 8 (04) : 297 - 308
  • [34] Catalyst effects of fabrication of carbon nanotubes synthesized by chemical vapor deposition
    Tian, F.
    Li, H. P.
    Zhao, N. Q.
    He, C. N.
    MATERIALS CHEMISTRY AND PHYSICS, 2009, 115 (2-3) : 493 - 495
  • [35] Carbon nanotubes as catalyst support in chemical vapor deposition reaction: A review
    Esteves, Laura M.
    Oliveira, Hugo A.
    Passos, Fabio B.
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2018, 65 : 1 - 12
  • [36] Synthesis of carbon nanotubes by swirled floating catalyst chemical vapour deposition method
    Abdulkareem, A. S.
    Afolabi, A. S.
    Iyuke, S. E.
    Pienaar, H. C. Vz
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2007, 7 (09) : 3233 - 3238
  • [37] The Effect of Catalyst on Carbon Nanotubes (CNTs) Synthesized By Catalytic Chemical Vapor Deposition (CVD) Technique
    Lim, S. Y.
    Norani, M. M.
    NANOMATERIALS: SYNTHESIS AND CHARACTERIZATION, 2012, 364 : 232 - +
  • [38] Magnetic properties of carbon nanotubes grown on Fe catalyst layer by microwave plasma enhanced chemical vapor deposition
    Fujiwara, Y. (fujiwara@phen.mie-u.ac.jp), 1600, American Institute of Physics Inc. (95):
  • [39] Magnetic properties of carbon nanotubes grown on Fe catalyst layer by microwave plasma enhanced chemical vapor deposition
    Fujiwara, Y
    Takegawa, H
    Sato, H
    Maeda, K
    Saito, Y
    Kobayashi, T
    Shiomi, S
    JOURNAL OF APPLIED PHYSICS, 2004, 95 (11) : 7118 - 7120
  • [40] Plasma enhanced chemical vapor deposition grown carbon nanotubes from ferritin catalyst for neural stimulation microelectrodes
    Haeffner, M.
    Schneider, K.
    Schuster, B. -E.
    Stamm, B.
    Latteyer, F.
    Fleischer, M.
    Burkhardt, C.
    Chasse, T.
    Stett, A.
    Kern, D. P.
    MICROELECTRONIC ENGINEERING, 2010, 87 (5-8) : 734 - 737