The Trapping Redundancy of Linear Block Codes

被引:16
|
作者
Laendner, Stefan [1 ]
Hehn, Thorsten [1 ]
Milenkovic, Olgica [2 ]
Huber, Johannes B. [1 ]
机构
[1] Univ Erlangen Nurnberg, Inst Informat Transmiss, D-91058 Erlangen, Germany
[2] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Belief propagation (BP); low-density parity-check (LDPC) codes; Margulis codes; projective geometry (PG) codes; trapping redundancy; trapping sets; PARITY-CHECK CODES; STOPPING REDUNDANCY; CAPACITY;
D O I
10.1109/TIT.2008.2008134
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We generalize the notion of the stopping redundancy in order to study the smallest size of a trapping set in Tanner graphs of linear block codes. In this context, we introduce the notion of the trapping redundancy of a code, which quantifies the relationship between the number of redundant rows in any parity-check matrix of a given code and the size of its smallest trapping set. Trapping sets with certain parameter sizes are known to cause error-floors in the performance curves of iterative belief propagation (BP) decoders, and it is therefore important to identify decoding matrices that avoid such sets. Bounds on the trapping redundancy are obtained using probabilistic and constructive methods, and the analysis covers both general and elementary trapping sets. Numerical values for these bounds are computed for the [2640, 1320] Margulis code and the class of projective geometry codes, and compared with some new code-specific trapping set size estimates.
引用
收藏
页码:53 / 63
页数:11
相关论文
共 50 条
  • [21] Trellis decoding of linear block codes
    Büttner, WH
    Staphorst, L
    Linde, LP
    PROCEEDINGS OF THE 1998 SOUTH AFRICAN SYMPOSIUM ON COMMUNICATIONS AND SIGNAL PROCESSING: COMSIG '98, 1998, : 171 - 174
  • [22] On the BCJR trellis for linear block codes
    McEliece, RJ
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (04) : 1072 - 1092
  • [23] Trellis decoding of linear block codes
    Univ of Pretoria, Pretoria, South Africa
    Proc S Afr Symp Commun Signal Process, (171-174):
  • [24] Linear error-block codes
    Feng, Keqin
    Xu, Lanju
    Hickernell, Fred J.
    FINITE FIELDS AND THEIR APPLICATIONS, 2006, 12 (04) : 638 - 652
  • [25] On importance sampling for linear block codes
    Xia, B
    Ryan, WE
    2003 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-5: NEW FRONTIERS IN TELECOMMUNICATIONS, 2003, : 2904 - 2908
  • [26] The error distribution of linear block codes
    Li, K
    Motani, M
    2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 464 - 464
  • [27] Turbo decoding of linear block codes
    Yue, DW
    Shwedyk, E
    2001 IEEE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERS AND SIGNAL PROCESSING, VOLS I AND II, CONFERENCE PROCEEDINGS, 2001, : 107 - 110
  • [28] Concentration of Magnetization for Linear Block Codes
    Korada, Satish Babu
    Kudekar, Shrinivas
    Macris, Nicolas
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 1433 - 1437
  • [29] Subcode graphs of linear block codes
    Mittelholzer, T
    2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 116 - 116
  • [30] Refined Upper Bounds on Stopping Redundancy of Binary Linear Codes
    Yakimenka, Yauhen
    Skachek, Vitaly
    2015 IEEE INFORMATION THEORY WORKSHOP (ITW), 2015,